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Abstract—Models of energy storage systems used for optimal
energy management commonly feature unsophisticated loss ex-
pressions (lossless or constant efficiency). Preserving the tractabil-
ity (i.e. convexity) of the optimization motivates this simpleness,
at the expense of physical realism. Relaxing the storage loss ex-
pression from an equality constraint to an inequality allows using
more complex and physically realistic models while preserving
convexity. Although this relaxation has been used quite casually
for a decade in varied energy management applications (power
systems dispatch, electric vehicles), only few articles studied this
technique for itself. To increase the awareness of loss relaxation,
along with its limitations, we depict a unified view of relaxed
storage loss models. Also, we propose the “convex monomial
loss model”, one continuously parametrized family of nonlinear
convex expressions which contains all classical loss models and
unlocks new possibilities for loss dependency in storage power
and energy level. This is one step to reunite piecewise linear and
nonlinear models which are generally studied separately. Finally,
we compare the effect of these varied loss models on the optimal
charge/discharge profile of a storage in an elementary energy
management application.

Index Terms—convex optimization, energy management, en-
ergy storage, storage losses, storage models

I. INTRODUCTION

Energy storage systems (ESSs), in particular batteries, are
being used in a large and growing number of applications,
down from small portable devices up to large power systems.
Energy management is the specific name for the control of the
power flows in a system which includes one or more energy
storages, to achieve desired objectives like energy shifting,
power shaving, backup...

Energy management can sometimes be achieved by simple
rules, but many storage applications have complex enough
requirements to justify using mathematical optimization tools
instead. A large subset of optimization-based control methods,
like Model Predictive Control, require solving optimization
problems online. This necessitates solving those optimizations
quickly and reliably and this reliability depends essentially on
the class of optimization problem being solved.

This need pushes control designers to formulate their prob-
lems as Convex Programs (CPs), because it is a wide class
of problems for which reliable solvers exist, in particular for
the common Linear and Quadratic subclasses (LPs and QPs)
[1]. True, there also exist popular and useful classes of non-
convex problems, mainly the previous ones expanded with

some integrality constraints. The resulting problems (MILP,
MIQP. . . ) benefit from powerful solvers, but fundamentally
don’t share the nice convergence properties of convex ones.
This justifies the search for convex formulations of energy
management problems, if physically possible.

As detailed in section II-A, for a model-based energy
management problem to be convex, storage loss expression
must be linear. This is very restrictive (see II-C) and means
that in many applications, storage losses are simplified (e.g.
[2]) or fully neglected just to satisfy convexity and not for
physical reasons.

To overcome this limitation, befitting constraint relaxation
schemes have been used. Indeed, relaxation is a typical method
to “convexify” a variety of problems, for example Optimal
Power Flows (e.g. [3]). For energy management, these methods
all come to relaxing the storage loss expression from an
equality constraint (losses = some expression) to an inequality
(losses ≥ some expression) [4]. The rationale is that, at the
optimum, no energy should be wasted, so the inequality should
be tight. We call this the “positive energy price argument”
and come back to it further down. Switching to an inequality
allows using any nonlinear convex expressions for losses,
while keeping the resulting energy management problem con-
vex. Then, the choice of loss expression depends on both the
application and the type of storage technology being modeled.

The most popular model (beyond the lossless case men-
tioned above) is, by far, the piecewise-linear-in-P expres-
sion (hereafter PWL-in-P , e.g. ∝ |P |), which is generally
transcribed using a constant charging/discharging efficiency
(η < 1) (see [2], [5]–[8] for a tiny subset of use cases). This
is a physics-free and generic storage model which is typically
formulated as a LP, while it is a non-convex MILP without
the relaxation (see III-A). The recent work of Gonzalez-
Castellanos et al. [9], although being a much wider effort of
convex battery modeling (not just losses), also yields a closely
related model (PWL-in-P with a linear effect of the energy
level).

Inspired by resistive heating, a quadratic-in-P model (i.e.
∝ P 2) is more physical for electrochemical storage technolo-
gies. For optimal energy management, these devices can be
represented by the circuit model visible on the right-hand part
of Fig. 1. Convex optimization of this model was proposed
by Murgovski et al. [4] in a battery intensive application



Fig. 1. Energy storage models. On the left: energy based model which is
ubiquitous in energy management optimization. On the right: circuit based
model which is more physical for electrochemical devices (v0 and r are often
state dependent). Conversion between the two is given Section III-B.

(Hybrid Electric Vehicle) along with a detailed, first of its kind,
discussion on the “convexification” the circuit model. Also, it’s
maybe because quadratic terms often appears in power flow
equations that we found a resembling model in a distribution
grid control application [10]. Section III-B is devoted to this
model.

Now, the most complex and genuinely nonlinear loss ex-
pression we found is in the follow-up work of Murgovski
et al. [11] and subsequently used by Pinto et al. [12]. Their
P 2/E loss expression (with E being the storage energy level)
allows modeling storage technologies for which the open
circuit voltage (v0 on Fig. 1) varies with the energy level E.
We discuss and generalize this in section IV.

This literature review shows that the practice of relaxing
storage loss expressions exist. Still, it is not ubiquitous (see
e.g. [13] for a MILP energy management where the integrality
constraints associated to the storage model may have been
relaxed, although it may not be the case for other components).

Also, this relaxation is considered as natural enough that
often the “positive price argument” is only lightly mentioned,
if not omitted, although it cannot apply sometimes. Indeed
the relaxation can fail in the sense that the relaxed loss
inequality can be not tight so that more energy is wasted
than prescribed by the loss expression. A notable exception
to this casualness is Almassalkhi et al. [5, App. A] which
not only explain the argument, but also give a worst-case
bound for when the relaxation is not tight. Also, they propose
a heuristic algorithm to fix this. Alternatively, Z. Li et al.
[14] and Duan et al. [15] identified mathematically sufficient
conditions for the relaxation to be exact. Still, these conditions
do not always apply [8]. Recently, Arroyo et al. [16] refuted
two Transactions articles which used too simple conditions!
We thus feel the need to shed one more light on these useful
storage loss relaxation techniques, while carefully referencing
the limitations.

Finally, the literature shows a complete split between the
popular physics-free PWL-in-P loss model and the more
elaborate P 2 or P 2/E models. However, when searching for
a convex model fitted to experimental data, it may be useful to
have a continuously parametrized family of loss expressions.
Thus, it is our core contribution in this paper to:

1) Describe the relaxation of storage losses in a unified way
which handles the various existing loss models

2) Provide a simple continuous family of nonlinear convex

loss expressions which can depend on both storage
power and energy level. This family contains existing
models (PWL, quadratic, P 2/E) as special cases.

The unified description of loss models is covered in sections
II and III, while our new “convex monomial loss model” is
described in IV. Finally, in section V we create an elementary
energy management application with one energy storage. We
use this example to compare the effect of the varied loss
models on the optimal charge/discharge profile of the storage.

II. CONVEX STORAGE MODELING
WITH LOSS RELAXATION

A. Recall of Convexity

We recall the conditions for an optimization problem to be
convex (see [4, §2] or textbook [1] for more background).
Optimization problems, as often used in energy management,
can be formalized as:

min
x∈Rn

f(x), such that gi(x) ≤ 0, hj(x) = 0 (i, j = 1, 2 . . . )

For this problem to be convex, the cost function f must
be convex and so must be the set of feasible solutions
{x such that gi(x) ≤ 0 and hj(x) = 0,∀i, j}. The latter im-
plies that each inequality function gi must be convex and each
equality function hj must be linear. This will be crucial to our
discussion, because few practical storage loss expressions are
linear.

B. Generic Storage Model

We start with the following generic energy storage model:

Eb(k + 1) = Eb(k) + (Pb(k)− Ploss)∆t (1)

It is expressed in discrete time (instant k, timestep ∆t)
and describes how the stored energy Eb evolves with the
storage power Pb (in receptor convention) including losses
Ploss. Because all variables are discrete signals, we drop
below the time index k for relations applying for all k. This
is the most common type of model for energy management
optimization, while electrochemical models are more often
expressed with charge, current and voltages (see Fig. 1). The
conversion between the two is discussed further (section III-B).

The stored energy is bounded, which is typically modeled
with:

0 ≤ Eb ≤ Erated, (2)

where Erated is the maximum usable energy of the sys-
tem. From it, one can define the state of energy SoE =
Eb/Erated ∈ [0, 1]. Storage power is also bounded by

−P−rated ≤ Pb ≤ P
+
rated. (3)

Constraint (3) allows asymmetrical charge and discharge
rate limits. A rich extension is to consider a more general
convex set for the pair of variables (Pb, Eb), instead of the
rectangular box defined by (2)–(3), see for example [9], [11].

Equations (1)–(3) describe a convex set of constraints to
be embedded in a larger optimization problem involving
Eb(k), Pb(k), Ploss(k) (k = 1...K) as decision variables.



However, storage dynamics (1) is generic because the storage
losses Ploss have yet to be specified. So the convexity of the
complete problem depends on the loss expression.

C. The Limited Usability of Linear Loss Expressions

The simplest convex model is the lossless storage

Ploss = 0 (4)

which, of course, in practice is used to simplify (1).
The only convex generalization of this, assuming losses

depend on power and state of energy, is the linear expression

Ploss = p0 + cPPb + cEEb. (5)

Parameter p0 models a constant self-discharge, while coeffi-
cient cE modulates the discharge with the state of energy. Both
are physically meaningful and have some popularity (e.g. [2]).
In contrast, we have never seen the use of the cP coefficient.
Indeed, since power Pb can take both signs, there would be
some physical contradiction in assuming that losses may be
reduced for large charge (cP < 0) or discharge (cP > 0) rates.

D. Generic Relaxation of Storage Losses

The limited physical applicability of the linear loss model
yielded befitting relaxation techniques (e.g. [4], [5], [14]). The
generic formulation, expressed again here with a dependency
on storage power and energy1, is:

Ploss ≥ g(Pb, Eb) (6)

where g means here any convex function. This formulation
rests on three principles, sorted by decreasing order of given-
ness:

1) Mathematical fact: with g convex, (6) indeed defines a
convex inequality constraints as in II-A

2) Physical observation: the fact that storage losses gen-
erally increase for large positive and negative values
of power Pb and are minimal for Pb = 0 motivates
using a function g convex in Pb (e.g. quadratic, absolute
value. . . )

3) Application-dependent hypothesis: most optimal energy
management problems embed the property that the op-
timum is reached by minimizing wasted energy, so that
inequality (6) should be tight at the solution. We call this
the “positive price argument”, which is often mentioned
in various ways (e.g. [6], [10], [12]).

Remarks:
1) We know no principle similar to 2) to justify the

convexity of g in Eb nor its joint convexity. Therefore,
these hypotheses appear only as useful mathematical
tricks which applicability needs to be proved. This
applicability question would be the same if losses should
depend on more variables.

2) Under principle 3) that losses should be minimized,
the loss function g does not need to be an explicit
expression. Instead it can be the solution of a convex

1Two extra meaningful dependencies for losses are temperature and aging.

minimization subproblem which can be embedded in the
global problem. See examples below.

3) Some precise sufficient conditions have been identified
to replace principle 3), but they are not necessary, cannot
always be checked ex-ante and are application-specific
(see [8], [14], [15]).

4) In the literature, the relaxation we introduce in (6) is
more commonly written by inserting the loss expression
directly in the storage dynamics (1) and relaxing the
equality as E(k + 1) ≤ E(k) + (. . . ). It is equivalent
and more compact, but we carve out the losses here to
ease the discussion on their expression.

III. EXISTING CONVEX LOSS MODELS

There are two commonly used convex expressions that can
play the role of g in (6).

A. Piecewise-Linear-in-P Loss Model

The most common loss model is the PWL-in-P expression
(e.g. used in [2], [5]–[8], but also in many other studies):

g(Pb, Eb) = c+P
+
b + c−P

−
b (7)

where c+ and c− are the charge and discharge loss coefficients
respectively, while P+

b and P−b are the positive and negative
parts of Pb (i.e. positive variables with Pb = P+

b − P−b ).
This is very popular when the energy management problem
is expressed with a linear program (LP). Indeed, as said in
Remark 2 above, rather than using the explicit expression (7)
for g, it is better formulated as a LP:

g = min
P+

b ,P
−
b

c+P
+
b + c−P

−
b (8)

with constraints on the variables so that, at the optimum, those
are indeed the positive and negative parts of Pb:

P+
b ≥ Pb (9a)

P−b ≥ −Pb (9b)

P+
b , P

−
b ≥ 0 (9c)

P+
b , P

−
b ≤ P

+
rated, P

−
rated (9d)

Using Remark 4, this loss formulation is more commonly
injected directly in the storage dynamics (1) which becomes:

Eb(k + 1) ≤ Eb(k) + (η+P
+
b + P−b /η−)∆t (10)

Storage model (10) is obtained by replacing Pb with P+
b −

P−b and introducing the charging and discharging efficiency
coefficients η+ = 1 − c+ and η− = 1/(1 + c−). Expression
(10) is more compact than (1)+(7), but the transformations
performed here show how it belongs to our generic framework
of convex losses functions. Coefficients η+, η− can be chosen
equal to the square root of the round-trip efficiency of a given
storage technology. However, this does not make (7) a physical
representation of losses, because a round-trip efficiency is valid
for a given cycle only, since instantaneous losses are rarely
piecewise linear.

In the literature, expression (10) is more often written with
equality rather than ≤. An equality constraint is allowed here



Fig. 2. Complementarity constraint (bold red lines) + convex relaxation (dark
blue triangle), vs box constraint (light blue square)

because the expression is linear in (P+
b , P

−
b ), but it is still a

case of relaxed losses like (6), because the variables P+
b and

P−b have no complementarity constraint. This means that they
can be both positive, with no effect on the net flow Pb, but
which creates an artificial excess of losses.

Complementarity can be enforced by either a nonlinear
complementarity constraint P+

b .P
−
b = 0 [5] or by introducing

a binary variable which creates a Mixed Integer LP (MILP)
[16]. We do not detail these possibilities since they are both
not convex. Only, we highlight that it is the exactness of
this LP relaxation that was most thoroughly studied (no
comparable results for nonlinear loss models). First, sufficient
mathematical conditions have been identified for the relaxation
to be tight [14], [15] (though we mentioned in §II-D that their
applicability is limited). Second, the usage of an equality sign
in (10) creates an upper bound for the worst-case amount
of artificially wasted energy, when the relaxation fails. This
worst-case bound (given in [5, App. A]) is better (lower) when
the pair of constraints (9d) is replaced by the tighter limit

P+
b /P

+
rated + P−b /P

−
rated ≤ 1 (11)

which can be either viewed as the tightest convex approxi-
mation of the nonlinear complementarity constraint or derived
by relaxing the integrality constraint in the MILP formulation.
See Fig. 2 (draft).

B. Quadratic-in-P Loss Model

The second quite popular convex loss model is quadratic in
power (detailed in [4], with a close variant in [10]):

g(Pb, Eb) = ρ.P 2
b (12)

with positive parameter ρ. Compared to the PWL-in-P model
from section III-A, quadratic losses penalize more strongly
large charge/discharge rates, while small rates are asymptoti-
cally lossless.

For optimization purpose, expression (12) is convex but
nonlinear, so that a QP or a general Non-Linear Programming
(NLP) solver must be used (or the quadratic function must be
approximated by a set of a few tangents).

Physically, the loss model (12) mimics, inside an energy-
based model, the Joule losses on the series resistance of a
circuit model (see Fig. 1). To understand this, we need to

state the equivalence between the two. Conversion from circuit
variables i, v to power is

Pb = v.i = v0.i+ r.i2, (13)

where the last term is equal to the Joule losses. This expression
can be solved for the current:

i =
Pb
v0
× 2

1 +
√

1 + 4rPb

v20

(14)

which is defined for Pb ≥ −v
2
0

4r (i.e. the circuit model embeds a
physical discharge power limit). Expression (14) is the product
of a term linear in Pb and a nonlinear correction factor which
tends to one for small power (|Pb| � v20

4r , which is the same
as assuming a small voltage drop: |v − v0| � v0). As a
consequence, when substituting this expression of i in the
Joule losses, one gets an approximately quadratic expression

Ploss ≈
r

v20
P 2
b (15)

from which one can identify the physical definition of the
quadratic loss coefficient ρ:

ρ = r/v20 . (16)

This analysis shows three conditions for the quadratic-in-
P losses model to indeed match the Joule losses of a circuit
model:

1) Charge/discharge rate must be small
2) Series resistance r must be constant
3) Open circuit voltage (OCV) v0 must be constant
The first condition can be lifted, if needed, because the

loss expression without approximation is not quadratic but still
convex (not shown here).

Lifting the “constant resistance & OCV” conditions is the
motivation for the model introduced in the next section.

IV. THE “CONVEX MONOMIAL LOSS MODEL”

Based on the physical limitations of the quadratic loss model
we search for a loss expression which can depend on the State
of Energy and be separable like (15). Also, the dependency in
P is assumed a power law P ab , so that our model embeds both
PWL and quadratic-in-P loss models with a = 1 and a = 2
respectively. The model would be ρ(Eb)× P ab , but to handle
both signs of Pb when a 6= 2, we split the expression for the
positive and negative parts of the power, like for the PWL-in-P
model in III-A. Finally, to enable an easier convexity analysis,
we impose that the dependency in the SoE should also be a
power law, albeit with a negative exponent (for convexity).
Here is our proposed “convex monomial loss model”:

g(Pb, Eb) = c+
(P+
b )a+

|Eb − e+|b+
+ c−

(P−b )a−

|Eb − e−|b−
(17)

with power exponents a+, a− ≥ 1 (likely equal), energy
exponents b+, b− ≥ 0, scaling parameters c+, c− ≥ 0 (like in
(7), but not with the same physical dimension) and parameters
e+, e− which are the energy value for which losses tend to
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Fig. 3. Production shifting optimization for different storage loss models. Scenario is 1 kW production while low electricity price during 1st hour and no
production while high electricity price during 2nd hour. All lossy models are approximately calibrated to show a 80% round trip storage efficiency, except
the last one which is a variant at 75%. With such efficiency, all models leverage the price difference by shifting the production to the 2nd hour. However, the
discharge profile varies with the loss model. Source: [17].

+∞, so we must have e+, e− < 0 or > Erated. In case the
behavior in charge and discharge is symmetrical, expression
(17) simplifies to:

g(Pb, Eb) =
c

|Eb − e|b︸ ︷︷ ︸
ρ(Eb)

×|Pb|a (18)

Example: For a capacitor C, we have a quadratic relation
between energy and open circuit voltage: Eb = C(v20−v2ε)/2,
where vε is the lowest useful OCV value for which the capac-
itor is defined as empty (useable energy Eb = 0). With it, the
Joule losses expression (15) becomes Ploss ≈ rC/2

Eb+Cv2ε/2
P 2
b .

Thus we identify the following coefficients in model (18):
a = 2, b = 1, c = rC/2, e = −Cv2ε/2. Notice that a direct
derivation of this P 2/E model was first proposed in [11].

A. Convexity Conditions for the Monomial Loss Model
We analyze the convexity of the first term of expression

(17) since it is the sum of two similar expressions and since
addition preserves convexity. We recognize that this term is the
positive scaling of the 2D monomial fa,b : x, y 7→ xayb, with
arguments being P+

b and an affine expression of Eb. Indeed
the first term is c+.fa+,−b+(P+

b ,±(Eb−e+)). The ± is “+” if
e+ < 0 and “−” if e+ > Erated. This transformation preserves
the convexity of f (see [1, §3.2.2]). We refer to the Appendix
and Fig. 4 for the convexity analysis of fa,b. (noticing that
f uses a flipped sign convention for exponent b to make it
symmetric between a and b). The main result is that the loss
model (17) is convex if:

b+ ≤ a+ − 1, b− ≤ a− − 1 (19)

As an illustration, for the quadratic-in-P case (a± = 2),
we must have b± ∈ [0, 1]. We can thus observe that the

P 2/E loss model of a capacitor (b± = 1) is on the “edge
of convexity”. Also, the monomial model shows that making
the loss coefficients c± in the PWL-in-P model (7) depend
on SoE (i.e. introduce an SoE dependent efficiency) would be
not convex (a = 1 implies b = 0).

V. ILLUSTRATION OF LOSS MODELS

We now introduce an elementary energy storage application
to show the effect of varied loss models on the optimal
charge/discharge profile. One storage unit is used as a buffer
between a power production Pprod and a grid injection Pgrid.
Conservation of power is: Pgrid = Pprod − Pb. The opti-
mization objective is to maximize the profit from selling the
production to the grid at a time varying price:

maxCgrid =

K∑
k=1

cgrid(k).Pgrid(k)∆t (20)

The price will be positive so that the loss relaxation always
works (see “positive price argument” in §II-D). The scenario is
a production shifting on two hours (K = 20,∆t = 0.1 h), with
a Erated = 1 kWh storage. For the first hour, Pprod = 1 kW
and price is low (cgrid = 0.1 C/kWh). Then for the second
hour, zero production and price is high (cgrid = 0.2 C/kWh).
The storage, described by (1) and varying loss models, can
shift the production to the high price hour, if losses are small
enough.

Optimal trajectories are shown on Fig. 3 for the lossless
storage and four loss models: PWL-in-Pb (7) (c± = 0.111),
linear-in-Eb (5) (cE = 0.29 W/Wh), quadratic-in-Pb (12)
(ρ = 0.122 W/W²) and the symmetric monomial loss model
(18), tuned for a capacitor (a = 2, b = 1, c = 0.0685, e =
−0.25 kWh), that is losses are higher at low SoE for a given



power. All models are tuned to yield an 80% round-trip
efficiency on this scenario to make them comparable (except
the last plot, see below). We checked that for all models the
relaxed loss inequality (6) is tight, that is the relaxation works.

It can be observed that the charging phase is the same for all,
with the storage absorbing all the production (Pb = +1 kW).
Then, despite the same round-trip efficiency, there is a great
variety in discharge profiles, depending on the loss model:
∝ P 2

b losses smooth out the discharge on the entire second
hour to reduce power peaks, while the lossless and PWL
models allow faster discharge2 since efficiency is constant.
The ∝ Eb losses push for the earliest discharge. Finally, the
ρ(Eb)P

2
b model shows a decaying discharge rate, to prevent

loss increase at low SoE. That is Ploss stays quite constant
despite the rising loss coefficient ρ(Eb).

The last plot of Fig. 3 is a variant of this model, with slightly
higher losses (c = 0.094, round-trip efficiency is 75%). This
shows that the early charging is done at a reduced rate, with
some of the production sold directly at a low price, because of
the high initial value of ρ. Such time-varying partial arbitrage
during a constant price period can only be obtained with an
SoE-dependent loss model.

Optimization results were obtained by describing optimiza-
tion problems in Julia using the JuMP package [18]. Solvers
were Ipopt [19] and ECOS [20]. The complete code is avail-
able in a Jupyter notebook [17].

VI. CONCLUSION

The relaxation of storage losses enable more realistic loss
models while preserving convexity. We described this relax-
ation in a generic way, unifying the existing works which
are often split by model types (e.g. piecewise linear vs.
others), and we proposed one flexible model which contains
all existing loss expressions.

Future work includes studying the case when the relaxation
fails, e.g. generalizing the worst case bound which exists for
the PWL-in-P model. Also, including other variables influ-
encing losses (temperature, aging), would be useful. Finally,
fitting our model to actual battery loss data would confirm its
usefulness.
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APPENDIX
CONVEXITY OF THE LOSS HELPER FUNCTION

We define the loss helper function as the 2D monomial

f : x, y 7→ xayb, (21)

2There is no unique solution to the optimization problem (20) with zero or
PWL-in-P losses, so we add a tiny increasing penalty coefficient to Pgrid

to select the “earliest injection” solution among all optimal trajectories. This
avoids getting a random one. A later discharge would be equally optimal.

Fig. 4. Convexity of the losses helper function f : x, y 7→ xayb on R2
+,

depending on exponents a and b. Red area 0 < a < 1 is excluded because f
is concave in the x-direction (same for b). Blue regions are excluded because
the determinant of the Hessian is negative. The three convex areas are in
green. Source: [17].

defined for positive arguments x, y and real exponents a, b.
The convexity of f is equivalent to the positive definiteness

of its Hessian:

H(x, y) =

(
a(a− 1)xa−2yb abxa−1yb−1

abxa−1yb−1 b(b− 1)xayb−2

)
(22)

H is positive definite if and only if:
• each diagonal term is positive (i.e. f is convex the x and
y directions)

• the determinant is positive
The areas where these two conditions are not fulfilled are
highlighted in red and blue respectively on the (a, b) plane in
Fig. 4. This leaves three convex regions in green. In this anal-
ysis, we assume that variable x will be mapped to the storage
power Pb (or −Pb). Since losses are generally increasing with
the charging/discharging power, only the region with positive
exponent a makes physical sense. Thus the single region with
interesting exponent values, highlighted on Fig. 4, is:

{(a, b) such that a+ b ≥ 1, b ≤ 0} (23)
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