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Version Control with Git

accelerated tutorial 
for busy academics

Pierre Haessig
CentraleSupélec Rennes, January 24, 2018
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Why Git ?

1) Version Control system: 
keep track of changes (history)

• Git = most popular VCS since 2010
• Alternatives: Subversion (svn), Mercurial

2) Collaboration
• Publish and on the web

- including the history
- always up-to-date

• Collaborate
manage asynchronous contributions,
with potential conflicts.
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Outline of the training

1) Personal work: single user on its local computer

week-long break

2) Publish work on the Internet: hosted Git services (GitHub, GitLab)

3) Collaborative work: keep in sync, manage conflicts 



  5/26

1) Personal work 

single user on its local computer

(no leaks on a “cloud” ☻, 
but no backup either ☹)
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Personal work (local computer)

➔ Setting up Git: install and configure (once per machine)
➔ Initialize an empty git repository, 
➔ Track changes : add changes to the staging area, create commits
➔ Compare versions (dif) and explore the history (log)

Practice 1
based on

 http://swcarpentry.github.io/git-novice/ 

http://swcarpentry.github.io/git-novice/
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Setting up Git 
(once per machine)

● Install Git. Instructions for Windows:

1) first, Git for Windows http://gitforwindows.org/ . 

On page https://git-scm.com/download/win , download should start automatically.

2) then I suggest TortoiseGit as a convenient graphical tool https://tortoisegit.org/ 

● Create empty folder and open “Git Bash”
● Configure identity: git config (name & email)

http://swcarpentry.github.io/git-novice/02-setup/ 

Pra
cti

ce
 1

http://gitforwindows.org/
https://git-scm.com/download/win
https://tortoisegit.org/
http://swcarpentry.github.io/git-novice/02-setup/
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Creating an (empty) Repository

● git init

● → Observe new “.git” directory (unhide hidden files and folders)

http://swcarpentry.github.io/git-novice/03-create/ 

Pra
cti

ce
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http://swcarpentry.github.io/git-novice/03-create/
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Tracking changes

Actions:

1) Put changed files to the staging area: git add

2) Save staged content as a new commit: git commit

Check the Status of the repository: git status

http://swcarpentry.github.io/git-novice/04-changes/  

Pra
cti

ce
 1

http://swcarpentry.github.io/git-novice/04-changes/
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Exploring History

● Compare versions (diff): git diff
– Ex: git diff HEAD~1 script.m

● Explore the history (the graph of all commits): git log

(Easier with graphical tools, c.f. next)

http://swcarpentry.github.io/git-novice/05-history/ 

Pra
cti

ce
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http://swcarpentry.github.io/git-novice/05-history/
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Places

config

init

add
commit

status
diff
log

checkout

Commands
git ...

Workspace
Index/Staging area
Local Repository
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Graphical Git tools

● (Too) many to choose!
● Windows shell: TortoiseGit
● IDE integration: e.g. Matlab
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TortoiseGit

● https://tortoisegit.org/ 
● A “Windows Shell Interface”,

i.e., in the file explorer:
“right click” → context menu

https://tortoisegit.org/
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Git in Matlab

● Integration in the 
“Current Folder” panel 
of Matlab Desktop

● Details in doc 
https://fr.mathworks.com/help/matlab/source-control.html

– e.g.  handling of 
binary files like 
Simulink’s .slx

https://fr.mathworks.com/help/matlab/source-control.html


  

Week-long break
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2) Publish work on the Internet

Hosted Git services: 
GitLab (at CentraleSupélec)

GitHub
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GitLab

GitLab instance hosted at CS: https://gitlab.centralesupelec.fr/ 

Login with
your usual
LDAP username

https://gitlab.centralesupelec.fr/
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Publish work

Based on the previously created local Git repository (Practice 1)
➔ On CentraleSupélec GitLab website: create a new repository. 
➔ On local computer, add a remote, then push the local commits.
➔ On GitLab: explore the web interface, look at the commits.

Practice 2
based on

 http://swcarpentry.github.io/git-novice/07-github/ (with GitLab instead)

https://gitlab.centralesupelec.fr/
http://swcarpentry.github.io/git-novice/07-github/
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3) Collaborative work

“How to keep in sync?”

Clone an existing repository

Pull (fetch & merge) fresh changes

Manage potential conflicts
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Collaborate

Based on the previously created online (GitLab) Git repository (Practice 2)
➔ make pairs: “Owner” and “Collaborator”
➔ Collab. clones the GL repo of Owner (needs O to give rights to C)
➔ Collab. makes local changes, commit and push
➔ Owner pulls those changes

Practice 3
based on

http://swcarpentry.github.io/git-novice/08-collab/ 

http://swcarpentry.github.io/git-novice/08-collab/
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The “ping-pong” Git workflow

No conflicts,
if people work 
in very diferent 
time zones        !

Notice:  Git provides
no lock mechanism.
Work is asynchronous

Pra
cti

ce
 3

globe with meridians: https://www.emojione.com/emoji/1f310 

https://www.emojione.com/emoji/1f310
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Manage merge conflicts

Again in pairs “Owner” and “Collaborator”
➔ Collab clones the GL repo of Owner (needs O to give rights to C)
➔ Owner AND Collab make local changes, commit 
➔ Both attempt to push

➔ The first to push is fine ☻
➔ The second gets an error (“local is behind remote”) 

→ needs to pulls the first changes, and merge its own changes (automatic or needs 
manual conflict resolution)

➔ Then second creates a merge commit and finally makes a push

http://swcarpentry.github.io/git-novice/09-conflict/  

Pra
cti

ce
 3

http://swcarpentry.github.io/git-novice/09-conflict/
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Merge commit process
1)Everybody synced
2)Local commits
3)Collab pushes first

→ Owner’s view of 
remote is outdated

4)Owner pulls and 
make a merge 
commit

5)Owner pushes
Collab is outdated

6)Collab pulls
→ everybody synced

Pra
cti

ce
 3

http://swcarpentry.github.io/git-novice/09-conflict/ 
See also Git Branching - Branches in a Nutshell  from “Pro Git” book

http://swcarpentry.github.io/git-novice/09-conflict/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
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Review: typical workflows

● Locally: 

1) make changes

2) add to staging

3) commit to local repo

● With a remote: 

1) pull from remote (before making changes if possible)

2) make local commits

3) push to remote. If error (local behind remote), pull to merge.
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Ressources

Gentle introduction:
● “Version Control with Git” lesson from Software Carpentry 

http://swcarpentry.github.io/git-novice/
● Interactive tutorial https://try.github.io

Comprehensive book: 
● “Pro Git” by Chacon & Straub, Apress, 2nd Edition, 2014

free to read online https://git-scm.com/book/ 

http://swcarpentry.github.io/git-novice/
https://try.github.io/
https://git-scm.com/book/
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Quick References (Git “Cheatsheets”)

From Software Carpentry’s lesson Quick Reference page:
● Printable PDF (EN & FR) https://services.github.com/on-demand/resources/cheatsheets/ 
● Interactive webpage  http://ndpsoftware.com/git-cheatsheet.html 

http://swcarpentry.github.io/git-novice/reference/
https://services.github.com/on-demand/resources/cheatsheets/
http://ndpsoftware.com/git-cheatsheet.html
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