

 2/26

Version Control with Git

accelerated tutorial
for busy academics

Pierre Haessig
CentraleSupélec Rennes, January 24, 2018

 3/26

Why Git ?

1) Version Control system:
keep track of changes (history)

• Git = most popular VCS since 2010
• Alternatives: Subversion (svn), Mercurial

2) Collaboration
• Publish and on the web

- including the history
- always up-to-date

• Collaborate
manage asynchronous contributions,
with potential conflicts.

 4/26

Outline of the training

1) Personal work: single user on its local computer

week-long break

2) Publish work on the Internet: hosted Git services (GitHub, GitLab)

3) Collaborative work: keep in sync, manage conflicts

 5/26

1) Personal work

single user on its local computer

(no leaks on a “cloud” ☻,
but no backup either ☹)

 6/26

Personal work (local computer)

➔ Setting up Git: install and configure (once per machine)
➔ Initialize an empty git repository,
➔ Track changes : add changes to the staging area, create commits
➔ Compare versions (dif) and explore the history (log)

Practice 1
based on

 http://swcarpentry.github.io/git-novice/

http://swcarpentry.github.io/git-novice/

 7/26

Setting up Git
(once per machine)

● Install Git. Instructions for Windows:

1) first, Git for Windows http://gitforwindows.org/ .

On page https://git-scm.com/download/win , download should start automatically.

2) then I suggest TortoiseGit as a convenient graphical tool https://tortoisegit.org/

● Create empty folder and open “Git Bash”
● Configure identity: git config (name & email)

http://swcarpentry.github.io/git-novice/02-setup/

Pra
cti

ce
 1

http://gitforwindows.org/
https://git-scm.com/download/win
https://tortoisegit.org/
http://swcarpentry.github.io/git-novice/02-setup/

 8/26

Creating an (empty) Repository

● git init

● → Observe new “.git” directory (unhide hidden files and folders)

http://swcarpentry.github.io/git-novice/03-create/

Pra
cti

ce
 1

http://swcarpentry.github.io/git-novice/03-create/

 9/26

Tracking changes

Actions:

1) Put changed files to the staging area: git add

2) Save staged content as a new commit: git commit

Check the Status of the repository: git status

http://swcarpentry.github.io/git-novice/04-changes/

Pra
cti

ce
 1

http://swcarpentry.github.io/git-novice/04-changes/

 10/26

Exploring History

● Compare versions (diff): git diff
– Ex: git diff HEAD~1 script.m

● Explore the history (the graph of all commits): git log

(Easier with graphical tools, c.f. next)

http://swcarpentry.github.io/git-novice/05-history/

Pra
cti

ce
 1

http://swcarpentry.github.io/git-novice/05-history/

 11/26

Places

config

init

add
commit

status
diff
log

checkout

Commands
git ...

Workspace
Index/Staging area
Local Repository

 12/26

Graphical Git tools

● (Too) many to choose!
● Windows shell: TortoiseGit
● IDE integration: e.g. Matlab

 13/26

TortoiseGit

● https://tortoisegit.org/
● A “Windows Shell Interface”,

i.e., in the file explorer:
“right click” → context menu

https://tortoisegit.org/

 14/26

Git in Matlab

● Integration in the
“Current Folder” panel
of Matlab Desktop

● Details in doc
https://fr.mathworks.com/help/matlab/source-control.html

– e.g. handling of
binary files like
Simulink’s .slx

https://fr.mathworks.com/help/matlab/source-control.html

Week-long break

 16/26

2) Publish work on the Internet

Hosted Git services:
GitLab (at CentraleSupélec)

GitHub

 17/26

GitLab

GitLab instance hosted at CS: https://gitlab.centralesupelec.fr/

Login with
your usual
LDAP username

https://gitlab.centralesupelec.fr/

 18/26

Publish work

Based on the previously created local Git repository (Practice 1)
➔ On CentraleSupélec GitLab website: create a new repository.
➔ On local computer, add a remote, then push the local commits.
➔ On GitLab: explore the web interface, look at the commits.

Practice 2
based on

 http://swcarpentry.github.io/git-novice/07-github/ (with GitLab instead)

https://gitlab.centralesupelec.fr/
http://swcarpentry.github.io/git-novice/07-github/

 19/26

3) Collaborative work

“How to keep in sync?”

Clone an existing repository

Pull (fetch & merge) fresh changes

Manage potential conflicts

 20/26

Collaborate

Based on the previously created online (GitLab) Git repository (Practice 2)
➔ make pairs: “Owner” and “Collaborator”
➔ Collab. clones the GL repo of Owner (needs O to give rights to C)
➔ Collab. makes local changes, commit and push
➔ Owner pulls those changes

Practice 3
based on

http://swcarpentry.github.io/git-novice/08-collab/

http://swcarpentry.github.io/git-novice/08-collab/

 21/26

The “ping-pong” Git workflow

No conflicts,
if people work
in very diferent
time zones !

Notice: Git provides
no lock mechanism.
Work is asynchronous

Pra
cti

ce
 3

globe with meridians: https://www.emojione.com/emoji/1f310

https://www.emojione.com/emoji/1f310

 22/26

Manage merge conflicts

Again in pairs “Owner” and “Collaborator”
➔ Collab clones the GL repo of Owner (needs O to give rights to C)
➔ Owner AND Collab make local changes, commit
➔ Both attempt to push

➔ The first to push is fine ☻
➔ The second gets an error (“local is behind remote”)

→ needs to pulls the first changes, and merge its own changes (automatic or needs
manual conflict resolution)

➔ Then second creates a merge commit and finally makes a push

http://swcarpentry.github.io/git-novice/09-conflict/

Pra
cti

ce
 3

http://swcarpentry.github.io/git-novice/09-conflict/

 23/26

Merge commit process
1)Everybody synced
2)Local commits
3)Collab pushes first

→ Owner’s view of
remote is outdated

4)Owner pulls and
make a merge
commit

5)Owner pushes
Collab is outdated

6)Collab pulls
→ everybody synced

Pra
cti

ce
 3

http://swcarpentry.github.io/git-novice/09-conflict/
See also Git Branching - Branches in a Nutshell from “Pro Git” book

http://swcarpentry.github.io/git-novice/09-conflict/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

 24/26

Review: typical workflows

● Locally:

1) make changes

2) add to staging

3) commit to local repo

● With a remote:

1) pull from remote (before making changes if possible)

2) make local commits

3) push to remote. If error (local behind remote), pull to merge.

 25/26

Ressources

Gentle introduction:
● “Version Control with Git” lesson from Software Carpentry

http://swcarpentry.github.io/git-novice/
● Interactive tutorial https://try.github.io

Comprehensive book:
● “Pro Git” by Chacon & Straub, Apress, 2nd Edition, 2014

free to read online https://git-scm.com/book/

http://swcarpentry.github.io/git-novice/
https://try.github.io/
https://git-scm.com/book/

 26/26

Quick References (Git “Cheatsheets”)

From Software Carpentry’s lesson Quick Reference page:
● Printable PDF (EN & FR) https://services.github.com/on-demand/resources/cheatsheets/
● Interactive webpage http://ndpsoftware.com/git-cheatsheet.html

http://swcarpentry.github.io/git-novice/reference/
https://services.github.com/on-demand/resources/cheatsheets/
http://ndpsoftware.com/git-cheatsheet.html

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26

