Context & motivation	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusion 00

Convex Storage Loss Modeling for Optimal Energy Management

Pierre HAESSIG

IETR lab, CentraleSupélec (campus of Rennes), France

IEEE PowerTech Madrid, June 28, 2021

http://pierreh.eu

pierre.haessig@centralesupelec.fr

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion

Outline of the presentation

- 1. Context & motivation
- 2. Convex storage modeling
 - Generic storage model
 - Relaxation of storage losses
- 3. Panorama of storage loss models
 - Overview of loss models
 - Our contribution
- 4. Loss models illustrated
- 5. Conclusion

Convex storage modeling

Panorama of storage loss models 000

Loss models illustrated

Conclusion

Outline of the presentation

1. Context & motivation

- 2. Convex storage modeling
- 3. Panorama of storage loss models
- 4. Loss models illustrated
- 5. Conclusion

Context & motivation	Convex storage modeling	Panorama of storage loss models	Loss models illustrated
000	0000	000	000000

Energy management (EM) is often optimization based

EM = control of the power flows in a system with *energy storages*

Control objectives of EM:

- Minimizing a criterion (economical, ecological...)
- Satisfaying constraints (e.g. storage bounds)

Context & motivation	Convex storage modeling	Panorama of storage loss models	Loss models illustrated
000	0000	000	000000

Energy management (EM) is often optimization based

EM = control of the power flows in a system with *energy storages*

Control objectives of EM:

- Minimizing a criterion (economical, ecological...)
- Satisfaying constraints (e.g. storage bounds)

EM is often based on *online* optimization (ex.: Model Predictive Control) \rightarrow convergence should be *reliable* \rightarrow optim. problem should be **convex**

Convex optimization problems can be solved reliably

Optimization problem:

$$\min_{x\in\mathbb{R}^n}J(x), \text{ s.t. } g(x)\leq 0, \ h(x)=0$$

Convexity conditions:

- Objective function *J*: convex
- Inequality function g: convex
- Equality function *h*: **linear**

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion

Outline of the presentation

1. Context & motivation

- 2. Convex storage modeling
 - Generic storage model
 - Relaxation of storage losses

3. Panorama of storage loss models

4. Loss models illustrated

5. Conclusion

Convex storage modeling $\circ \bullet \circ \circ$

Panorama of storage loss models

Loss models illustrated

Conclusion

Generic storage model

Storage dynamics with losses is *linear:*

$$E_b(k+1) = E_b(k) + (P_b(k) - P_{loss})\Delta_t$$

 \rightarrow Convexity of the storage model depends on the convexity of the loss expression: " $P_{loss} = ...$ "

Convex storage modeling $\circ \bullet \circ \circ$

Panorama of storage loss models

Loss models illustrated

Conclusion

Generic storage model

Storage dynamics with losses is *linear:*

$$E_b(k+1) = E_b(k) + (P_b(k) - P_{loss})\Delta_t$$

 \rightarrow Convexity of the storage model depends on the convexity of the loss expression: " $P_{loss} = ...$ "

Trade-off in the choice of the loss expression:

- Convex for efficient optimization
- Physically realistic

Convex storage modeling $\circ \bullet \circ \circ$

Panorama of storage loss models

Loss models illustrated

Conclusion

Generic storage model

Storage dynamics with losses is *linear*:

$$E_b(k+1) = E_b(k) + (P_b(k) - P_{loss})\Delta_t$$

 \rightarrow Convexity of the storage model depends on the convexity of the loss expression: " $P_{loss} = ...$ "

Trade-off in the choice of the loss expression:

- Convex for efficient optimization
- Physically realistic

Unfortunate limitation

- Only *linear* loss expressions are genuinely convex, but *very limiting* (see article)
- $\,\circ\,$ Many reasonable expressions are not convex (Joule heating: $P_{loss}\propto P_b^2)$

Convex storage modeling ○○●○ Panorama of storage loss models

Loss models illustrated

Conclusion 00

Relaxation of storage losses

Key idea (widely used in literature)

Relax the equality constraint (losses = some expression) to an inequality (losses \geq some expression).

 \rightarrow This allows using *any convex expression* for losses

Generic loss formulation (assuming a dependency on storage power and energy):

 $P_{loss} \geq g(P_b, E_b)$

where g means any *convex* function.

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Applicability of the relaxation of losses

In many applications, the inequality will be *tight at the optimum*:

$$"P_{loss} \ge g(P_b, E_b)" \longrightarrow "P^*_{loss} = g(P^*_b, E^*_b)"$$

Heuristic justification: "Positive price argument"

If the incremental cost of wasting energy is *positive*, then, at the optimum, no energy should be wasted.

(see article for the few references giving detailed mathematical conditions for exact relaxation)

Convex storage modeling ○○○● Panorama of storage loss models 000

Loss models illustrated

Conclusion

Applicability of the relaxation of losses

In many applications, the inequality will be *tight at the optimum*:

$$"P_{loss} \ge g(P_b, E_b)" \longrightarrow "P_{loss} = g(P_b^*, E_b^*)"$$

Heuristic justification: "Positive price argument"

If the incremental cost of wasting energy is *positive*, then, at the optimum, no energy should be wasted.

(see article for the few references giving detailed mathematical conditions for exact relaxation)

Case where loss relaxation cannot work: negative energy price

Any system where the storage should *absorb an excess of energy* which cannot be dissipated for free, like in some grid congestions.

Consequence: there can be an *artificial excess* of storage loss (excess: $P_{loss} - g > 0$).

Convex storage modeling

Panorama of storage loss models $\bullet \circ \circ$

Loss models illustrated

Conclusion 00

Outline of the presentation

1. Context & motivation

- 2. Convex storage modeling
- 3. Panorama of storage loss modelsOverview of loss models
 - Our contribution
- 4. Loss models illustrated

5. Conclusion

Context & motivation 000 Convex storage modeling 000 Panorama of storage loss models Loss models illustrated 0000000 Context & convex storage modeling 0000 Convex storage model in the convex storage

Possibilities for loss expressions

Existing convex loss expressions (beyond linear):

- Piecewise-linear-in-P: g(P_b, E_b) = c₊P_b⁺ + c₋P_b⁻
 Physics-free, widespread usage
 (→ relates to constant efficiency storage model (see article))
- Quadratic-in-P: $g(P_b, E_b) = \rho P_b^2$ approx. Joule heating $(r.l^2)$ when Open Circuit Voltage is constant
- Quadratic-in-*P* over linear-in-*E* (P^2/E): approx. Joule heating in a capacitor (OVC $\propto E$)

Place

Context & motivation 000 Convex storage modeling 000 Convex storage mode

Possibilities for loss expressions

Existing convex loss expressions (beyond linear):

- Piecewise-linear-in-P: g(P_b, E_b) = c₊P_b⁺ + c₋P_b⁻
 Physics-free, widespread usage
 (→ relates to constant efficiency storage model (see article))
- Quadratic-in-*P*: $g(P_b, E_b) = \rho P_b^2$ approx. Joule heating $(r.l^2)$ when Open Circuit Voltage is constant
- Quadratic-in-*P* over linear-in-*E* (P^2/E): approx. Joule heating in a capacitor (OVC $\propto E$)

Our proposition: the "convex monomial loss model" ($\sim P^a/E^b$)

One continous family of nonlinear convex loss model:

- contains all existing models as special cases
- parametrized by 4 (or 8) real coefficients: suitable for *model fitting* to experimental loss data

Place

Contribution: the "Convex monomial loss model"

Loss expression (symmetric charge/discharge case):

Convex with $a \ge 1, b \ge 0$ and $b \le a - 1$ (see article)

Examples:

• Quad-in-
$$P(a = 2) \rightarrow b \in [0, 1]$$
, e.g. P^2/E (capacitor)

• PWL-in- $P(a = 1) \rightarrow b = 0 (\rightarrow \text{ no SoE dependency allowed!})$

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Outline of the presentation

1. Context & motivation

- 2. Convex storage modeling
- 3. Panorama of storage loss models

4. Loss models illustrated

5. Conclusion

Application: storage for grid-connected production

Optimization objective: maximize value of energy sold to grid at price c_{grid} :

$$\max C_{grid} = \sum_{k=1}^{K} c_{grid}(k) . P_{grid}(k) \Delta_t$$

Code available in Jupyter notebook https://github.com/pierre-haessig/convex-storage-loss

Context	&	motivation	
000			

Convex storage modeling

Panorama of storage loss models 000

Conclusior 00

Scenario description: production shifting

Parameters: 2 hours ($K = 20, \Delta_t = 0.1$ h), $E_{rated} = 1$ kWh storage

- 1. 1st hour: prod. $P_{prod} = 1 \text{ kW}$ and *low* price $c_{grid} = 0.1 \text{ }/\text{kWh}$
- 2. 2nd hour: *zero* production and *high* price $c_{grid} = 0.2 \notin kWh$

Interpretation

Storage can shift the production to the high price hour

Experiment objective

See the effect of the loss model on the charge/discharge profile

Remark: All loss models calibrated for same 80% round-trip storage efficiency on the experiment

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Production shifting experiment

Introductory case: lossless storage

Context & motivation Convex storage modeling 000 0000

Panorama of storage loss models

Loss models illustrated

Conclusion

Production shifting experiment

Case 1: PWL-in-*P* model (constant efficiency)

PWL-in-*P* losses reduce the profit, but no other effect on the profile

Panorama of storage loss models

Loss models illustrated 0000000

Production shifting experiment

Case 2: Quadratic-in-P model

Quad-in- P_b losses (E_{arid} 0.800 kWh, C_{arid} 0.1600 €)

Quadratic losses smooth out the charge/discharge power

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion

Production shifting experiment

Case 3: P^2/E model (supercapacitor) \rightarrow losses depend on State of Energy

Discharge power is reduced at low State of Energy

Convex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion ••

Outline of the presentation

1. Context & motivation

- 2. Convex storage modeling
- 3. Panorama of storage loss models
- 4. Loss models illustrated
- 5. Conclusion

Context & motivation	Convex storage modeling	Panorama of storage loss models	Loss models illustrated
Conclusion			

Contribution:

- Unified description of storage loss relaxation (linear & nonlinear cases scattered in previous literature)
- One "convex monomial loss model" model to bind them all

Impact

More elaborate loss models unleash more realistic storage trajectories

Conclusion

Context & motivation 000	Convex storage modeling	Panorama of storage loss models	Loss models illustrated
Conclusion			

Contribution:

- Unified description of storage loss relaxation (linear & nonlinear cases scattered in previous literature)
- One "convex monomial loss model" model to bind them all

Impact

More elaborate loss models unleash more realistic storage trajectories

Future work:

- Characterize the worst-case amount of artificially wasted energy, when the relaxation fails (negative energy price)
- Fit the "convex monomial loss model" to actual Lithium-ion battery data

Conclusion