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Energy management (EM) is o�en optimization based

EM = control of the power flows in a
system with energy storages

Control objectives of EM:
◦ Minimizing a criterion (economical,

ecological. . . )
◦ Satisfaying constraints (e.g. storage

bounds)

EM is o�en based on online optimization (ex.: Model Predictive Control)
→ convergence should be reliable → optim. problem should be convex
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Convex optimization problems can be solved reliably

Optimization problem:

min
x∈Rn

J(x), s.t. g(x) ≤ 0, h(x) = 0

Convexity conditions:

◦ Objective function J: convex
◦ Inequality function g: convex
◦ Equality function h: linear
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Generic storage model

Storage dynamics with losses is linear:

Eb(k + 1) = Eb(k) + (Pb(k)− Ploss)∆t

→ Convexity of the storage model depends on the
convexity of the loss expression: “Ploss = ...”

Trade-o� in the choice of the loss expression:
◦ Convex for e�icient optimization
◦ Physically realistic

Unfortunate limitation
◦ Only linear loss expressions are genuinely convex, but very limiting (see article)

◦ Many reasonable expressions are not convex (Joule heating: Ploss ∝ P2
b )
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Relaxation of storage losses

Key idea (widely used in literature)

Relax the equality constraint (losses = some expression) to an inequality (losses ≥
some expression).

→ This allows using any convex expression for losses

Generic loss formulation (assuming a dependency on storage power and energy):

Ploss ≥ g(Pb, Eb)

where g means any convex function.
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Applicability of the relaxation of losses

In many applications, the inequality will be tight at the optimum:

“Ploss ≥ g(Pb, Eb)” → “P∗loss = g(P∗b , E
∗
b )”

Heuristic justification: “Positive price argument”

If the incremental cost of wasting energy is positive,
then, at the optimum, no energy should be wasted.

(see article for the few references giving detailed mathematical conditions for exact relaxation)

Case where loss relaxation cannot work: negative energy price

Any system where the storage should absorb an excess of energy which cannot be
dissipated for free, like in some grid congestions.

Consequence: there can be an artificial excess of storage loss (excess: Ploss − g > 0).
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Possibilities for loss expressions

Existing convex loss expressions (beyond linear):
◦ Piecewise-linear-in-P : g(Pb, Eb) = c+P+

b + c−P−b
Physics-free, widespread usage
(→ relates to constant e�iciency storage model (see article))
◦ �adratic-in-P : g(Pb, Eb) = ρ.P2

b
approx. Joule heating (r.I2) when Open Circuit Voltage is constant
◦ �adratic-in-P over linear-in-E (P2/E):

approx. Joule heating in a capacitor (OVC ∝ E)

Our proposition: the “convex monomial loss model” (∼ Pa/Eb)

One continous family of nonlinear convex loss model:
◦ contains all existing models as special cases
◦ parametrized by 4 (or 8) real coe�icients:

suitable for model fi�ing to experimental loss data
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Contribution: the “Convex monomial loss model”

Loss expression (symmetric charge/discharge case):

g(Pb, Eb) = c
|Pb|a

|Eb − e|b

Convex with a ≥ 1, b ≥ 0 and b ≤ a− 1 (see article)

Examples:
◦ �ad-in-P (a = 2) → b ∈ [0, 1], e.g. P2/E (capacitor)
◦ PWL-in-P (a = 1) → b = 0 (→ no SoE dependency allowed!)
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Application: storage for grid-connected production

Optimization objective: maximize value of energy sold to grid at price cgrid :

max Cgrid =
K∑

k=1

cgrid (k).Pgrid (k)∆t

Code available in Jupyter notebook https://github.com/pierre-haessig/convex-storage-loss
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Scenario description: production shi�ing

Parameters: 2 hours (K = 20,∆t = 0.1 h), Erated = 1 kWh storage
1. 1st hour: prod. Pprod = 1 kW and low price cgrid = 0.1 €/kWh

2. 2nd hour: zero production and high price cgrid = 0.2 €/kWh

Interpretation

Storage can shi� the production to the high price hour

Experiment objective

See the e�ect of the loss model on the charge/discharge profile

Remark: All loss models calibrated for same 80% round-trip storage e�iciency on the
experiment

15 / 21



Context & motivation Convex storage modeling Panorama of storage loss models Loss models illustrated Conclusion

Production shi�ing experiment
Introductory case: lossless storage
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Production shi�ing experiment
Case 1: PWL-in-P model (constant e�iciency)
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PWL-in-P losses reduce the profit, but no other e�ect on the profile
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Production shi�ing experiment
Case 2: �adratic-in-P model
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�adratic losses smooth out the charge/discharge power
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Production shi�ing experiment
Case 3: P2/E model (supercapacitor) → losses depend on State of Energy
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Discharge power is reduced at low State of Energy
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Conclusion

Contribution:
◦ Unified description of storage loss relaxation

(linear & nonlinear cases sca�ered in previous literature)
◦ One “convex monomial loss model” model to bind them all

Impact

More elaborate loss models unleash more realistic storage trajectories

Future work:
◦ Characterize the worst-case amount of artificially wasted energy,

when the relaxation fails (negative energy price)
◦ Fit the “convex monomial loss model” to actual Lithium-ion ba�ery data
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