Context	0
000	C

nvex storage modeling 000 Panorama of storage loss models 000000

Loss models illustrated

Conclusion 00

Convex Storage Loss Modeling for Optimal Energy Management

Pierre Haessig, Jesse James Prince Agbodjan, Romain Bourdais, Hervé Guéguen

CentraleSupélec (campus de Rennes) - IETR

Journées Nationales Automatique 2020 (JNA), Session Commande des Systèmes Électriques (CSE) November 26, 2020

http://pierreh.eu

pierre.haessig@centralesupelec.fr

Panorama of storage loss models

Loss models illustrated

Conclusion

Outline of the presentation

- 1. Context
- 2. Convex storage modeling
 - Generic storage model
 - Limitation of the linear loss model
 - Relaxation of storage losses
- 3. Panorama of storage loss models
 - Overview of loss models
 - Existing models
 - Our contribution
- 4. Loss models illustrated
- 5. Conclusion

	ıg
00000	

Panorama of storage loss models

Loss models illustrated

Conclusion

Outline of the presentation

1. Context

- 2. Convex storage modeling
- 3. Panorama of storage loss models
- 4. Loss models illustrated
- 5. Conclusion

Context	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusion
000	00000	000000	00000000	00

Energy management (EM) is often optimization based

EM = control of the power flows in a system with *storages*

Control objective:

- Minimizing a criterion (economical, ecological...)
- Satisfaying constraints (e.g. storage bounds)

EM is often based on *online* optimization (e.g. MPC) \rightarrow optimization should be 100% reliable \rightarrow **convex**

Context	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusio
000	00000	000000	00000000	00

Convex optimization problems can be solved reliably

Conditions this optimization to be convex

Convex objective J, convex ineq. func. g, linear eq. func. h

•0000

Convex storage modeling

Outline of the presentation

- 2. Convex storage modeling
 - Generic storage model
 - Limitation of the linear loss model
 - Relaxation of storage losses

Convex storage modelingConvex storage modelingConvex storage modelingConvex storage modelingConvex storage modeling

Panorama of storage loss models

Loss models illustrated

Conclusion

Generic storage model

Storage dynamics with losses is *linear*:

$$E_b(k+1) = E_b(k) + (P_b(k) - P_{loss})\Delta_t$$

 \rightarrow Convexity of the storage model depends on the *convexity of the loss expression*

Panorama of storage loss models

Loss models illustrated

Conclusion

Generic storage model

Storage dynamics with losses is *linear*:

$$E_b(k+1) = E_b(k) + (P_b(k) - P_{loss})\Delta_t$$

 \rightarrow Convexity of the storage model depends on the *convexity of the loss expression*

Now, what choice of loss expression: $P_{loss} = ?$

- Convex for efficient optimization
- and also physically realistic?

Panorama of storage loss models 000000

Loss models illustrated

Conclusion

Linear loss model: very limiting

Linear expression is the only *genuine* convex model:

$$P_{loss} = p_0 + c_P P_b + c_E E_b$$

Lossless storage (P_{loss}) is the popular special case

Coefficient meaning:

- *p*₀: constant self-discharge
- c_E : self-discharge proportional to energy level
- *c_P*: physically *not meaningful*

Convex storage modeling

Panorama of storage loss models 000000

Loss models illustrated

Conclusion

Linear loss model: very limiting

Linear expression is the only *genuine* convex model:

$$P_{loss} = p_0 + c_P P_b + c_E E_b$$

Lossless storage (P_{loss}) is the popular special case

Coefficient meaning:

- *p*₀: constant self-discharge
- c_E : self-discharge proportional to energy level
- *c_P*: physically *not meaningful*

Limitation

Unfortunately, many simple expressions like $P_{loss} = P_b^2$ are *not convex*

Context	Convex storage modeling	Panorama of storage loss mod
000	00000	000000

Loss models illustrated

Conclusion

Relaxation of storage losses

Key idea (widely used in literature)

Relax the equality constraint (losses = some expression) to an inequality (losses \geq some expression).

 \rightarrow This allows using *any convex expression* for losses

Generic loss formulation (assuming a dependency on storage power and energy):

 $P_{loss} \geq g(P_b, E_b)$

where g means any *convex* function.

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Exactness of the relaxation of losses

Although losses relaxed as $P_{loss} \ge g(P_b, E_b)$, it is expected that, at the optimum, the inequality will be *tight*.

Context

Convex storage modeling ○○○○● Panorama of storage loss models

Loss models illustrated

Conclusion 00

Exactness of the relaxation of losses

Although losses relaxed as $P_{loss} \ge g(P_b, E_b)$, it is expected that, at the optimum, the inequality will be *tight*.

Heuristic justification: "Positive price argument"

If the incremental cost of wasting energy is *positive*, then at the optimum, no energy should be wasted.

Otherwise (negative energy price), there can be an *artificial excess* of wasted energy (excess: $P_{loss} - g > 0$).

Panorama of storage loss models

Loss models illustrated

Conclusion

Exactness of the relaxation of losses

Although losses relaxed as $P_{loss} \ge g(P_b, E_b)$, it is expected that, at the optimum, the inequality will be *tight*.

Heuristic justification: "Positive price argument"

If the incremental cost of wasting energy is *positive*, then at the optimum, no energy should be wasted.

Otherwise (negative energy price), there can be an *artificial excess* of wasted energy (excess: $P_{loss} - g > 0$).

A few sets of sufficient conditions were reported, but:

- application specific
- cannot always be checked *ex-ante*
- o conditions are sufficient, but not necessary

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Outline of the presentation

1. Context

- 2. Convex storage modeling
- 3. Panorama of storage loss models
 - Overview of loss models
 - Existing models
 - Our contribution
- 4. Loss models illustrated
- 5. Conclusion

Panorama of storage loss models

Loss models illustrated

Conclusion

Possibilities for loss expressions

Existing convex loss expressions (beyond linear):

- Piecewise-linear-in-*P* (i.e. **constant efficiency**): Physics-free, widespread usage
- Quadratic-in-*P*: approx. Joule heating (*r*.*I*²)
- Quadratic-in-*P* over linear-in-*E* (P^2/E) : approx. Joule heating in a capacitor

Our proposition: the "convex monomial loss model" ($\sim P^a/E^b$)

One continous family of nonlinear convex loss model

- parametrized by 4 (or 8) real coefficients: suitable for *model fitting* to experimental loss data
- o contains all existing models as special cases

Context 000 onvex storage modeling

Panorama of storage loss models

Loss models illustrated 00000000

Conclusion 00

Piecewise-linear-in-*P* loss model

Loss expression:

$$g(P_b, E_b) = c_+ P_b^+ + c_- P_b^-$$

with P_b^+ and P_b^- : positive and neg. parts of P_b Property: physics-free

This loss model corresponds to the ubiquitous **constant efficiency** storage model*:

$$E_b(k+1) \le E_b(k) + (\eta_+ P_b^+ + P_b^-/\eta_-)\Delta_t$$

with $\eta_+ = 1 - c_+$ and $\eta_- = 1/(1 + c_-)$

(*) this model is normally written with "=", but it is still a relaxation, because variables P_b^+ , P_b^- are not exclusive unless imposed (MILP)

Panorama of storage loss models

Loss models illustrated

Conclusion

Quadratic-in-P loss model

Loss expression:

$$g(P_b, E_b) = \rho . P_b^2$$

Property: inspired by Joule heating

Correspondence to Joule heating in a circuit: $\rho = r/v_0^2$

Panorama of storage loss models

Loss models illustrated

Conclusion 00

Quadratic-in-P loss model

Loss expression:

$$g(P_b, E_b) = \rho . P_b^2$$

Property: inspired by Joule heating

Correspondence to Joule heating in a circuit: $\rho = r/v_0^2$

Idea to generalize the quadratic model

Because v_0 and r typically depend on the energy level (*SoE*), search for a *separable* loss model with $\rho(E_b)$

 Context
 Convex storage modeling
 Panorama of storage loss models
 Loss models illustrated
 Conclusion

 000
 00000
 000000
 00000000
 000000000
 000000000

Contribution: the "Convex monomial loss model"

Loss expression (symmetric charge/discharge case):

Convex with $a \ge 1, b \ge 0$ and $b \le a - 1$

Examples:

- Quad-in- $P(a = 2) \rightarrow b \in [0, 1]$, e.g. P^2/E (capacitor)
- PWL-in- $P(a = 1) \rightarrow b = 0 \rightarrow No \text{ SoE effect allowed!}$

Context 000	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusion
Contri	ibution: the "	Convex monomial	loss model"	

If charge/discharge asymmetry is wanted/needed

Loss expression:

$$g(P_b, E_b) = c_+ rac{(P_b^+)^{a_+}}{|E_b - e_+|^{b_+}} + c_- rac{(P_b^-)^{a_-}}{|E_b - e_-|^{b_-}}$$

A split between positive and negative parts of the power, like the PWL-in-*P* model.

(needed to implement the absolute value (a = 1) with a Linear Program)

Panorama of storage loss models

Loss models illustrated

Conclusion

Outline of the presentation

- 1. Context
- 2. Convex storage modeling
- 3. Panorama of storage loss models

4. Loss models illustrated

5. Conclusion

Context	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusio
000	00000	000000	00000000	00

Application: storage for grid-connected production

Optimization objective: energy sold to grid at price cgrid

$$\max C_{grid} = \sum_{k=1}^{K} c_{grid}(k) . P_{grid}(k) \Delta_t$$

Scenario description: production shifting

Parameters: 2 hours ($K = 20, \Delta_t = 0.1 \text{ h}$), $E_{rated} = 1 \text{ kWh storage}$

- 1. 1st hour: prod. $P_{prod} = 1 \text{ kW}$ and *low* price $c_{grid} = 0.1 \text{ }/\text{kWh}$
- 2. 2nd hour: *zero* production and *high* price $c_{grid} = 0.2 \notin kWh$

Interpretation

Storage can shift the production to the high price hour

Experiment objective

See the effect of the loss model on the charge/discharge profile

Remark: All loss models calibrated for same 80% round-trip storage efficiency on the experiment

Panorama of storage loss models

Loss models illustrated

Conclusion

Production shifting experiment Case 1: Lossless storage

Panorama of storage loss models 000000

Loss models illustrated

Conclusion

Production shifting experiment Case 2: PWL-in-P model

Losses reduce the gain, but no other effect on the profile

Panorama of storage loss models

Loss models illustrated

Conclusion

Production shifting experiment Case 3: Quadratic-in-*P* model

Quadratic losses smooth out the charge/discharge power

Panorama of storage loss models

Loss models illustrated

Conclusion

Production shifting experiment Case 4a: P²/E model (supercapacitor)

Discharge power is reduced at low SoE

ContextConvex storage modelingPanorama of storage loss models00000000000000

Loss models illustrated

Conclusion 00

Production shifting experiment Case 4b: P^2/E model (supercapacitor), 75% round-trip efficiency

Charging reduced at low SoE, energy given away to the grid

Context 000	Convex storage modeling	Panorama of storage loss models	Loss models illustrated	Conclusion 00
Tools				

Optimization results obtained by:

- describing optimization problems in Julia
- o using the JuMP package https://jump.dev/
- optimization solvers: Ipopt (NLP) and ECOS (LP, SOCP)

Results are open source

The complete code is available in a Jupyter notebook https://github.com/pierre-haessig/convex-storage-loss

(including one example where the relaxation fails: negative energy price)

Context	Convex storage modeling
000	00000

Panorama of storage loss models

Loss models illustrated

Conclusion ••

Outline of the presentation

- 1. Context
- 2. Convex storage modeling
- 3. Panorama of storage loss models
- 4. Loss models illustrated
- 5. Conclusion

27 / 27

000 0000

models Loss models

Conclusion

Contribution:

- Unified description of storage loss relaxation (linear & nonlinear cases)
- One loss model to bind them all

Significance

Better loss models unleash more realistic storage trajectories

Conclusion

Contribution:

- Unified description of storage loss relaxation (linear & nonlinear cases)
- One loss model to bind them all

Significance

Better loss models unleash more realistic storage trajectories

Future work:

 Characterize the worst-case amount of artificially wasted energy, when the relaxation fails (negative energy price)

More details in a submitted conf. paper, soon available on HAL.

Conclusion