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My background

Pierre Haessig
Assistant professor at Supélec since September 2014
PhD on Electricity Storage in relation to Wind Energy
(control & sizing), with SATIE lab (ENS Rennes) and EDF R&D.
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StoDynProg: a software package for Dynamic Opt.

Working on the management of Energy Storage with Wind Power,
I’ve progressively discovered that:

my problems fall in the class of Dynamic Optimization
(a quite specific problem structure)
the Dynamic Programming approach exists to solve them.
basic DP algorithms are “too simple to be worth
implementing” !!

So I’ve started a generic code to solve all my problems and
hopefully other Dynamic Optimization problems as well.

I wanted to challenge this “genericity claim” by trying it on a
different problem: I took it from a topic of interest of my research
group: Ocean Power Smoothing (with an Energy Storage).
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Ocean Wave Energy Harvesting

(CC-BY-NC picture by polandeze)
www.flickr.com/photos/polandeze/3151015577

Harvesting electric power from
Ocean Waves with “big
machines” is an active area of
Research & Development.

There are no industrialized
devices yet (unlike for wind &
sun), but rather a wide variety of
prototypes machines:
Wave Energy Converters

E.ON P2 Pelamis, July 2011 http://www.pelamiswave.com 7 / 17

www.flickr.com/photos/polandeze/3151015577
http://www.pelamiswave.com
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Ocean Energy Converter: the SEAREV

Hydro-mechanical design from Centrale Nantes.
Multon & Ben Ahmed group (SATIE) involved in the electric generator design. 8 / 17
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Ocean Energy Converter: the SEAREV
a highly fluctuating output
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SEAREV is a giant double-pendulum that swings with the waves.
An electric generator “brakes” the inner wheel to generates power
(Pprod = T (Ω)× Ω).
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Power smoothing
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Objective of this application
I want to smooth out the variations of the power production.

This requires an energy buffer to store the difference
(Pprod − Pgrid).
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Power smoothing using an Energy Storage
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Power smoothing: control of the Energy Storage
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Power smoothing: control of the Energy Storage
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First, using a simple control law (~policy)

Pgrid (t) =
Pmax
Erated

Esto(t)

. . . quite good result but storage is underused → could do better.
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Power smoothing: control of the Energy Storage

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w

e
r 

(M
W

)

Pprod

Pgrid

average

200 250 300 350 400
time (s)

0

2

4

6

8

E
n
e
rg

y
 E

st
o

(M
J)

linear
policy

linear
policy

“Doing better” is defined with an additive cost function which
penalizes Pgrid variations:

J =
1
NE

{N−1∑
k=0

cost(Pgrid (k)− Pavg )

}
with N →∞

cost J should be minized.
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Power smoothing: control of the Energy Storage
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Controlling the storage (choosing Pgrid at each time step)
in order to minimize a cost function is a

Stochastic Dynamic Optimization problem

(also called Stochastic Optimal Control)
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Power smoothing: control of the Energy Storage
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Dynamic Programming (Richard Bellman, ~1950) teaches us that
the optimal control is a state feedback policy:

Pgrid (t) = µ(x(t)) with x = (Esto, other variables?)
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Power smoothing: control of the Energy Storage
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Dynamic Programming (Richard Bellman, ~1950) teaches us that
the optimal control is a state feedback policy:

Pgrid (t) = µ(x(t)) with x = (Esto, other variables?)

And DP gives us methods to compute this policy function µ. . .
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Power smoothing: control of the Energy Storage
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And now applying the optimal feedback policy µ∗, the standard
deviation of the power injected to the grid is reduced by ~20 %
compared to the heuristic policy.
This improvement just comes from a smarter use of the stored
energy.
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Model for the dynamics

1. Energy storage dynamics is deterministic:

Esto(k + 1) = Esto(k) + Psto(k)∆t

2. SEAREV power is stochastic, with its dynamics:
Stochastic Autoregressive model for the pendulum speed Ω:

Ω(k) = φ1Ω(k − 1) + φ2Ω(k − 2) + w(k)

AR(2) → state space, with speed Ω and acceleration A
Non-linear transform gives the power: Pprod = T (Ω)× Ω

→ Markovian model for the power production of the SEAREV.

Full state: x = (Esto,Ω,A)
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Dynamic Programming equation

In the end, the optimization problem turns into solving the DP
equation:

J∗ + J̃(x) = min
u∈U(x)

E
w

{
cost(x , u,w)︸ ︷︷ ︸

instant cost

+ J̃(f (x , u,w))︸ ︷︷ ︸
cost of the future

}

u is control and w is random perturbation, using generic notations

It is a functional equation: should be solved for all x
The optimal policy µ : x 7→ u appears as the argmin.

The DP equation is solved on a discrete grid over the state space.
With x ∈ Rn, J̃ and µ are computed as n-dim. arrays.
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The optimal policy Pgrid(Esto, speed , accel)

Optimal control is a R3 7→ R function (i.e. numerically, a 3D array)

surfaces

Pgrid (speed , accel), for different levels of energy Esto
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Conclusion

About Dynamic Programming (DP) interest

Pros:
DP can compute a non linear, non intuitive control
Control law is computed once for all (off line, steady state)

Cons:
Resulting behavior is sensitive to modeling error (e.g. non
linear pendulum)
DP applicability is limited by state dimension (dim(X ) ≤ 4)

Code and data openly available on GitHub
https://github.com/pierre-haessig/stodynprog/tree/master/examples/
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