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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands

3. Modeling of stochastic inputs

4. Energy management of the storage

5. Sizing of the energetical capacity

6. Conclusions
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Outline of the presentation
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Energy storage introduction
Application examples, for renewables
Important modeling aspects
Conclusion
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Power/Energy: order of magnitudes

Power and Energy of some common objects:
◦ Smartphone: 5W (charging power), 5Wh (battery)
◦ Water boiler: 2 kW, 100Wh (1 ` of water from 15 to 100°C)
◦ Electric car: 100 kW (134 hp, peak), 25 kWh

Most of the talk: storage for the grid, in the MW/MWh scale.
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Storage on the grid

On the grid, production and consumption are equal.

Therefore, any “source of variability” must then be balanced by a
“source of flexibility”. Many levels of controls are present to control the many
degrees of freedom, to keep the system within a safe operating area.

Production

Electric Grid

Consumption

Energy storage is one such source of (pure) flexibility.
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Sources of variability

Variability comes from both production and consumption:
◦ a customer turning on its electric heating (load variability)

◦ sudden disconnection of a power plant (faults)
◦ wind and sun powered generation (weather variability)
◦ and even the grid itself (i.e. loss of a transmission line)

Many stochastic inputs, with some level of statistical
charaterization (i.e. load, wind and solar power forecasting).

The effect of weather
Many of the above are related to weather variability (ex: icing on
transmission line).
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Sources of flexibility

Many degrees of freedom are available to maintain the power grid
equilibrium:
◦ Scheduling of dispatchable generation
◦ Fine adjustements of dispatchable generation (“frequency
regulation”, primary/secondary reserve, . . . )

◦ Load shedding (hard reduction), demand side management
(soft reduction)
◦ and Energy Storage Systems (ESS), said to be “great for the
future”.

Actually, energy storage is already there. . .
Energy storage in the present grid

Hydro power (with or without pumping) is, by far, the main
storage technology in used today (for decades).

and demand side management for heating is a kind of storage as well.
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Energy and Power ratings

Many different technology, with different Energy/Power ratings

“Time constant” of a storage
T = Erated/Prated , technology dependent.
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Different applications

A quick tour of storage field applications, connected to wind/solar
generation.
◦ different goals, different codes
◦ different time constants, technologies

9 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Flywheels (small time constants)

Beacon Power: “frequency regulation” plants, as a service for
system operators. 20 MW/5 MWh (15 minutes).

http://beaconpower.com/hazle-township-pennsylvania/

Also used in some Uninterruptible Power Supplies (UPS).
Ex: Piller flywheels can deliver several MW during 10 seconds.
http://www.piller.com/205/energy-storage
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Wind power smoothing in Hawaï

In Kahuku Wind Power project (2011), energy storage helps wind
integration in a weak grid (200MW).

System:
◦ 15 MW/10 MWh

Xtreme Power (high
power lead-acid)
◦ 30 MW wind farm in
Hawaï
◦ controls ramps to ±1
MW/min
◦ (fire in 2011)

Image: Xtreme Power
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Futamata NaS-Wind farm (2009)

A huge pilot plant for reducing wind power variability
(possible operation at constant output!).

Ratings:
◦ 51 MW wind farm at

Futamata, Japan
◦ 34 MW sodium sulfur
(NaS) batteries
◦ storage time
constant: 7 hours

(Kawakami 2010)

NaS technology: promising battery technology for grid scale storage.
Hot temperature operation (300°C). Deals with Terna (Italy) and EDF (France).
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Small PV-storage systems
off-grid area

In off-grid remote area, millions of people rely on PV-storage
systems for their daily electricity consumption.
(Diesel backup also possible).

Typical system (New Caledonia):

◦ 1 kW PV (peak)
◦ 17 kWh battery

Lead-acid battery are used, for
robustness, low price and high
energy/power ratio.

(Multon, 2011)
Picture: http://www.sunzil.nc
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Small PV-storage
grid connected houses

Recent offers for storage as a home appliance (e.g. German market).
Goal: increasing the self-consumption of PV energy.

Ex: Bosch BPT-S 5 kW solar inverter, with lithium-ion battery
(4 to 13 kWh).
Li-ion chosen for high efficiency and long lifespan (20 years expected).
Picture: http://bosch-solar-storage.com
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El Hierro wind-hydro

El Hierro (Canary Islands), 10 000 inhabitants,
targets 100% renewable electricity (to replace Diesel).

Power plant inaugurated in 2014:
◦ 11MW of wind
◦ 11MW of hydro generation
◦ 6MW of pumping

Cost: 80M€ (i.e. 7 €/W).

Picture, and more info:
http://www.goronadelviento.es
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Important modeling aspects

For storage control or sizing, models are necessary. Here are some
important aspects that should be taken into account in such
studies:
◦ dynamics (e.g. State of Energy evolution)
◦ energy losses (rarely negligible)
◦ investment cost (often huge)
◦ aging (which can lead to replacement, so re-investment)
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Storage dynamics

Simple energy-based description:

dEsto
dt = Psto − Plosses(. . . )

with operating constraints:
◦ energy: 0 ≤ Esto ≤ Erated (energetical capacity)
◦ power: −Pdischarge ≤ Psto ≤ Pcharge

(limitations can depend on State of Energy)

State of Energy
SoE = Esto/Erated , between 0 and 1.
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Losses (efficiency)

Storage losses depend on the technology, but also on the
operating conditions:
◦ State of Energy (ex: battery series resistance)
◦ Charge/discharge rate
◦ Temperature (for batteries)

Either model structure or model data is often hard to find.
Simplified linear losses model often used in design study:

Plosses = α|Psto|

Litterature often gives roundtrip efficiency ηcycle , i.e. efficiency
on a charge/discharge cycle, for some cycling conditions.
(warning: ηcycle ≈ 1− 2α)

18 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Losses of auxilliaries

The consumption or the losses of auxilliary systems should not be
forgotten.

Examples of auxilliaries:
◦ Losses of power electronics converters
◦ Air conditionning (quite usual for Lithium-ion batteries)
◦ Heating, for hot batteries (Sodium-Sulfur)

These can become the main sources of losses if the storage itself is
highly efficient (like lithium-ion).
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Storage investment cost

Storage investment cost is often evaluated by taking a unit price,
from manufacturer or litterature:
◦ price in €/kWh for “energy applications” (most batteries)
◦ price in €/kW for “power applications” (super-capacitors)

Examples:
◦ Lead-acid : 200 €/kWh (?)
◦ Lithium-ion: 500 to 1000 €/kWh (?)
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Storage investment cost
extra costs

Extra costs (sometimes unexpected) can be important.

Example 1:
◦ simple battery cell, versus
◦ battery module, which include measurements, protections and

a Battery Management System (BMS) which are require for a
safe operation.

Example 2: EDF in La Réunion, for a 7MWh NaS battery:
◦ planned to cost 2M€ (270 €/kWh)
◦ eventually cost 3M€ (420 €/kWh), due to additional civil

engineering required for chemical hazard.
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Aging modeling

Most storage systems are subject to some performance
degradation: aging.

Aging is due to technology-specific physical processes, often
complicated (e.g. in batteries).

Thus, the aging phenomenon is often described empirically, and
seperated into two contributions:
◦ calendar aging: degradation over time, in the absence of

charge/discharge.
◦ cycling aging: degradation due to charge/discharge

Typical value for Li-ion batteries: 1000 – 3000 deep cycles (more
small cycles).
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Aging + price: the usage cost

Combining the aging with capacity price, one can make simple
lifecycle cost analysis.

Application
For Li-ion battery at 1000 €/kWh, that can perform 3000 cycles,
what is the lifecycle usage cost discharging 1 kWh of electricity ?

1000
3000 = 0.33 €/kWh

(not taking into account the price to buy electricity).

Comparison: the price of electricity from grid is about 0.10 €/kWh
(France)
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Energy storage on electricity grids
a conclusion attempt

Energy storage on electricity grids:
◦ already in use, in contexts where it makes sense (lots of
niches)
◦ many field experminents, to test both the business model, and

the technical reliability (several cases of fire. . . ).
◦ not economical for large scale artitrage/energy shifting.
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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands
Renewables in French islands
Frame of the problem
Structure of the problem

3. Modeling of stochastic inputs

4. Energy management of the storage

5. Sizing of the energetical capacity

6. Conclusions
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Renewables in French islands

Islands (Guadeloupe, La Réunion) have weak grids (< 1GW), with
expensive and high-CO2 electricity (Diesel : 130 €/MWh).
→ Wind power at 110 €/MWh is economically interesting, but. . .

Island grids are particularly sensitive to the variability of
intermittent renewable energies (wind and PV).

Today treatment of variability:
◦ Production: flexible, but expensive units

(combustion turbine at 300 €/MWh).
◦ Grid code: a “30% limit” (at each time) of intermittent

productions (“non dispatchable”)

→ The growth of renewables is severely reduced
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Overview of wind power variability
Day-ahead production forecast

Wind power can be forecasted one day in advance, using
meteorological and statistical tools.
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day-ahead forecast

one week of forecast/production (1h means), in Guadeloupe

Day-ahead forecast is not perfect → errors to compensate. . .
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Wind-storage call for tenders
a new treatment for variability

Call for tenders of the French Energy Regulation Commission
(CRE) for wind farms with a production commitment:

Storage Control
to fulfill a production commitment

Storage

Production Grid

Storage
Energy
Control

Commitment

Forecasting

Payoff
&

Penalty
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Wind-storage call for tenders
a new treatment for variability

Storage Control
to fulfill a production commitment

Storage

Production Grid

Storage
Energy
Control

Commitment

Forecasting

Payoff
&

Penalty

Services required by the Commission:
◦ frequency regulation (10 % of rated power should be
adjustable during 15 minutes)
◦ limitation of power variations (ramps)
◦ commitment to a day-ahead production schedule.
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Problem statement

?

Production Grid

Energy
Management

Storage sizing

Storage

How to size and
how to manage

the wind-storage system?
A double optimization problem:

◦ Which storage sizing
(capacity Erated et power Prated )
enables to optimally fullfill
a day-ahead production commitment?

◦ Which control policy to use,
at a given sizing, to make the best use of the
energy stock?
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Problem specifics
beyond wind-storage context

Storage sizing
Optimization

with simulation of time
trajectories

which are stochastic (Monte-Carlo)

Energy management
Optimization

is dynamic
and stochastic

Models

◦ energy storage system
◦ uncertain inputs

Coupling
Sizing and

Energy management are
coupled optimizations.

“3 problems, rarely
addressed together”,
even in other contexts (ex. :
hybrid vehicules)
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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands

3. Modeling of stochastic inputs
Temporal modeling of forecast errors

4. Energy management of the storage

5. Sizing of the energetical capacity

6. Conclusions
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Importance of the forecast error

The storage is there to mitigate forecast errors.
Storage Control

to fulfill a production commitment

Storage

Production Grid

Storage
Energy
Control

Commitment

Forecasting

Payoff
&

Penalty

(hypothesis “day-ahead commitment = day-ahead forecast”)

Pdev = Pgrid − P∗grid = Pmis − Psto

The need for modeling Pmis

Day-ahead forecast error is the main input of the problem.
Thus the importance to characterize it.
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Characterizing forecast error

Forecast quality depends on the terrain complexity, and forecast
horizon, . . .
Example of a wind farm in Guadeloupe: standard deviation is 15%
of the rated power.
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Temporal structure : day-ahead forecast errors, at a hourly time
step, are not independent. . .

. . . sometimes forgotten/neglected in litterature on storage!
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Autocorrelation of forecast errors

Temporal dependency (autocorrelation) decays exponentially
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AR(1)  ϕ = 0.90
AR(1)  ϕ = 0.80
AR(1)  ϕ = 0.70

This shape corresponds to an AR(1) stochastic process.
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AR(1) autoregressive model
discrete time model, with time step ∆t = 1h

Model based on the low-pass filtering of a white noise ε(k) :

Pmis(k + 1) = φPmis(k) + σP

√
1− φ2 ε(k + 1)

“autoregressive”: each value depends on the previous one (with φ)
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AR(1) model =0.78
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Stochastic simulation with zero-correlation model

AR(1) model =0.00

field data
→ estim. φ̂ = 0.78
σ̂P = 0.15 pu

simulation with
autocorrelation
φ = 0.78 (σP = 0.15)

simulation without
autocorrelation
φ = 0.0 (σP = 0.15)
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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands

3. Modeling of stochastic inputs

4. Energy management of the storage
Description of the energy management problem
Using Dynamic Programming
Application to a day-ahead commitment

5. Sizing of the energetical capacity

6. Conclusions
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Description of the control problem

?

Wind-storage system

Storage

Production Grid

Energy
Management

How to management the energy storage?
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Description of the control problem

Energy management
with 2 degrees of freedom

Storage

Grid

mismatch of
wind power vs. commitment

dispatch 

store

curtail

penalties 

aging

losses

non-productionLosses

Costs

We want to allocate the forecast error(*) Pmis between : the grid,
a storage and a curtailment setpoint, at the least cost.

(*) hypothesis “day-ahead commitment = day-ahead forecast”
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Presentation of Dynamic Programming

The optimization of energy management is a dynamic et
stochastic optimization problem.

Dynamic programming (Bellman, ~1950) is the natural method to
address this kind of problem.

Usage in energy management:
◦ management of hydro-electric dams (ex. EDF).
◦ management of hybrid electric vehicles (litterature).

Often used for deterministic optimizations,. . .
ex.: predetermined mission profile for a vehicle.

. . . but more rarely in a stochastic context
ex.: hybrid electric vehicles [Lin 2004], elevators+supercapacitors [Bilbao 2012].
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Objective of Dynamic Programming

Minimize a penalty c(. . . ), in temporal average, in expectation:

J = 1
K E

{ K−1∑
k=0

c(xk , uk ,wk)
}

with K →∞

and the choice of the instantaneous penalty function c() is free.
→ We want to penalize in particular the deviation Pdev :

tolerance 

linear quadratic threshold threshold-quadratic

tolerance 

Shape to be chosen depending the desired behavior
(→ reflection on the rules of the wind-storage call for tenders)
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Dynamics of the System
in discrete time, with time step ∆t = 1h

A dynamics function f (xk , uk ,wk) models
the evolution of the state xk : “memory, inertia” of the system.

Example for the wind-storage system :
E (k + 1) = E (k) + Psto(k)∆t (storage)

Pmis(k + 1) = φPmis(k) + w(k) (AR(1) process)
state command stochastic perturbation
x = E ,Pmis u = Psto w =

√
1− φ2 ε

Constraint on the command Psto :
0 ≤ E + Psto∆t ≤ Erated (limit of the storage capacity)

The dynamic equation xk+1 = f (xk , uk ,wk) creates
a coupling between the instants → “dynamic optimization”
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(Stochastic) Dynamic Programming
the optimization procedure

Resolution with a backward recursive minimization: (“Bellman eq.”)

Jk(xk)∗ = min
uk∈U(xk)

E
wk

{
c(xk , uk ,wk)︸ ︷︷ ︸
instant cost

+ J∗k+1(
future state xk+1︷ ︸︸ ︷
f (xk , uk ,wk))︸ ︷︷ ︸
future cost

}

Fonctional equation: one must compute, for each value of the
state xk , the command uk which minimizes Jk(xk , uk).

This minimization produces an optimal control law (or policy):

uk = µ∗(xk)
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Closed-loop Control

Important property of dynamic programming:
◦ it doesn’t yield a value of the optimal command
(i.e. a number u∗k)

◦ but an optimal control law
(i.e. a function of the state µ∗ : xk 7→ u∗k)
→ fundamental when there are stochastic inputs

This optimal control law µ∗:
1. is computed off-line, once for all: heavy computation

(table xk 7→ u∗k on a grid over the state space),
2. and then is used on-line, at each instant: light computation

(ex.: multilinear interpolation).

→ Now, let’s observe storage simulations of an optimally controled
storage, with different shapes of penalization c(. . . ).

44 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Closed-loop Control

Important property of dynamic programming:
◦ it doesn’t yield a value of the optimal command
(i.e. a number u∗k)
◦ but an optimal control law
(i.e. a function of the state µ∗ : xk 7→ u∗k)

→ fundamental when there are stochastic inputs

This optimal control law µ∗:
1. is computed off-line, once for all: heavy computation

(table xk 7→ u∗k on a grid over the state space),
2. and then is used on-line, at each instant: light computation

(ex.: multilinear interpolation).

→ Now, let’s observe storage simulations of an optimally controled
storage, with different shapes of penalization c(. . . ).

44 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Closed-loop Control

Important property of dynamic programming:
◦ it doesn’t yield a value of the optimal command
(i.e. a number u∗k)
◦ but an optimal control law
(i.e. a function of the state µ∗ : xk 7→ u∗k)
→ fundamental when there are stochastic inputs

This optimal control law µ∗:
1. is computed off-line, once for all: heavy computation

(table xk 7→ u∗k on a grid over the state space),
2. and then is used on-line, at each instant: light computation

(ex.: multilinear interpolation).

→ Now, let’s observe storage simulations of an optimally controled
storage, with different shapes of penalization c(. . . ).

44 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Closed-loop Control

Important property of dynamic programming:
◦ it doesn’t yield a value of the optimal command
(i.e. a number u∗k)
◦ but an optimal control law
(i.e. a function of the state µ∗ : xk 7→ u∗k)
→ fundamental when there are stochastic inputs

This optimal control law µ∗:
1. is computed off-line, once for all: heavy computation

(table xk 7→ u∗k on a grid over the state space),
2. and then is used on-line, at each instant: light computation

(ex.: multilinear interpolation).

→ Now, let’s observe storage simulations of an optimally controled
storage, with different shapes of penalization c(. . . ).

44 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Closed-loop Control

Important property of dynamic programming:
◦ it doesn’t yield a value of the optimal command
(i.e. a number u∗k)
◦ but an optimal control law
(i.e. a function of the state µ∗ : xk 7→ u∗k)
→ fundamental when there are stochastic inputs

This optimal control law µ∗:
1. is computed off-line, once for all: heavy computation

(table xk 7→ u∗k on a grid over the state space),
2. and then is used on-line, at each instant: light computation

(ex.: multilinear interpolation).

→ Now, let’s observe storage simulations of an optimally controled
storage, with different shapes of penalization c(. . . ).

44 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Trajectories for different shapes of penalization
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Control law for different shapes of penalization

Storage: Psto = µ∗(Esto ,Pmis) Deviation: Pdev = Pmis − Psto

empirical control “Psto = Pmis as long as feasible”
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Effect of the choice of deviation penalization shape

Stochastic Dynamic Programming (SDP) can address a wide range
penalty functions.

By comparing the optimization results, we observe that:
◦ the penalization shape strongly impacts the behavior of the

wind-storage system

◦ practical lesson learned:
the grid code that shapes the penalties should be written for:
◦ discouraging “pirate” strategies of wind operators,
◦ encouraging “grid-friendly” behaviors

(ex.: avoid hard thresholds, non-convex penalizations).
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Effect of parameters

Just like the shape of the penalty function, the parameters of the
problem also influence the optimal control law:
◦ Storage capacity: Erated
→ the optimal control law depends on the sizing

◦ Autocorrelation coefficient of the input: φ
→ importance of a good estimation of φ (on field data)

Beyond these observations:

Interest for sizing
If a simple parametric form can be deduced,
that takes into account the storage capacity,

one can avoid the repeated optimization of energy management.
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Effect of the autocorrelation coefficient

Storage: Psto = µ∗(Esto ,Pmis) Deviation: Pdev = Pmis − Psto

input autocorrelation: φ=0.0

→ the persistence of the error Pmis influences the control law.
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Effect of the autocorrelation coefficient

Storage: Psto = µ∗(Esto ,Pmis) Deviation: Pdev = Pmis − Psto

input autocorrelation: φ=0.3

→ the persistence of the error Pmis influences the control law.
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Effect of the autocorrelation coefficient

Storage: Psto = µ∗(Esto ,Pmis) Deviation: Pdev = Pmis − Psto

input autocorrelation: φ=0.6

→ the persistence of the error Pmis influences the control law.
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Effect of the autocorrelation coefficient

Storage: Psto = µ∗(Esto ,Pmis) Deviation: Pdev = Pmis − Psto

input autocorrelation: φ=0.8

→ the persistence of the error Pmis influences the control law.
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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands

3. Modeling of stochastic inputs

4. Energy management of the storage

5. Sizing of the energetical capacity
Methodology
Effect of the autocorrelation of errors
Economic sizing

6. Conclusions
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Sizing methodology

Storage sizing needs a compromise between:
◦ minimization of the storage capacity Erated

◦ minimization of the commitment deviations Pdev (k)
→ 2 opposite/contradictory objectives

Possible solutions to come over this contradiction:
◦ minimization of the storage capacity, under a constraint of

deviation performance
◦ minimization of a weighted sum of the two objectives

(e.g. economic cost minimization)
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Methodology of performance estimation

2 key issues for performance evaluation with simulations:
◦ stochastic inputs → statistical estimation, with many

trajectories (Monte-Carlo)
◦ dynamical system → temporal simulations to “forget” the
initial state and reach a stationnary state.

Example of performance criterion:
commitment deviation, in mean
absolute value ‖Pdev‖1 = E[|Pdev |].

Other criterions:
energy losses, aging, . . .

To reduce the variance of estimation:
◦ more trajectories (N = 10x ),

vectorizable
◦ longer trajectories,

not vectorizable
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Effect of autocorrelation on performance

We have seen that:
1. day-ahead wind power forecast errors are autocorrelated.
2. this autocorrelation influences the optimal energy

management.

→ Now we want to observe its effect on sizing
(autocorrelation sometimes forgotten/neglected in litterature)

Simulations with:
◦ an model of ideal storage (no losses)
◦ an input stimulus Pmis simulated with an AR(1)

and we monitor the deviation Pdev = Pmis − Psto
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Effect of capacity on performance
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Effect of correlation on performance
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Effect of correlation on performance

We collect the statistic ‖Pdev‖1 = f (Erated , φ) for 30×10 pts.

10

≈ 50 %

Reading as (pre-)sizing table: Erated = f (‖Pdev‖1, φ)
autocorrelation strongly increases storage capacity need (~1 order of magnitude).

56 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Effect of correlation on performance

We collect the statistic ‖Pdev‖1 = f (Erated , φ) for 30×10 pts.

15

≈ 39 %

Reading as (pre-)sizing table: Erated = f (‖Pdev‖1, φ)

autocorrelation strongly increases storage capacity need (~1 order of magnitude).

56 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Effect of correlation on performance

We collect the statistic ‖Pdev‖1 = f (Erated , φ) for 30×10 pts.

15

≈ 39 %

2

Reading as (pre-)sizing table: Erated = f (‖Pdev‖1, φ)
autocorrelation strongly increases storage capacity need (~1 order of magnitude).

56 / 63



Storage for the grid Wind-storage context Input modeling Energy management Sizing Conclusion

Economic sizing

Compromise between storage cost and reduction of deviation Pdev

Needs of the economic sizing procedure
Economic evaluation needs a more detailed model:

estimation of losses and aging of the storage

Ex.: sizing of a Sodium-Sulfur (NaS) battery:
1. Thermo-electrical model, including Joule losses and heating

(hot battery at 350°C)
2. Performance evaluation, for different sizing choices:

commitment deviation, losses, . . .
3. Compute the economic cost including: investment, aging and

losses
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Observations on the optimal sizing

With a penalty of 150 €/MWhdev, the optimal capacity is 8.5MWh, for a
cost of 50 €/MWhprod (30 for penalty, 20 for storage cost).
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Dashed line: sensitivity to a variation of ± 30 % of the deviation penalty.
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Outline of the presentation

1. Storage for the grid

2. Context of wind-storage in French islands

3. Modeling of stochastic inputs

4. Energy management of the storage

5. Sizing of the energetical capacity

6. Conclusions
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Importance of models and data (e.g. weather forecast)

Modeling is instrumental to optimization (both sizing and
energy management):

Input modeling
In particular model for the dynamical behavior of
weather-related stochastic inputs
(For SDP: full probabilistic description, as a Markov process).

Field data (production and forecast) is also important, for the
validation of system performance (because the optimization models
are always somewhat wrong).
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Extensions

Extending the work on wind-storage for small islands:
◦ Evaluate costs for the grid (economic & environnemental)

◦ Interactions between farms (global cost vision)

◦ Other means of flexibility (demand side management?)

◦ Evaluate the value of forecast, from the point of view of a
wind-storage system.
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