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Wind Power Production with an Energy Storage System
an industrial application
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The French Commission for the Regulation of Energy (CRE)
launched a call for tender for wind farms “with services” targeting
French islands.
Key requirement

commitment on a day-ahead production plan, hour by hour.
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Wind Power Production with an Energy Storage System
system overview
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NaS battery testing

In parallel to the “wind-storage” call for tenders, the French utility EDF
is testing a 1 MW/7 MWh Sodium-Sulfur (NaS) battery in La Réunion.
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Objective

We study the sizing and the control (energy management policy)
of an Energy Storage System (ESS) to fulfill the day-ahead
production commitment of a wind farm.

The specific storage technology being investigated here is NaS since it is
currently tested on field.

For this purpose, we build a simulation model of a wind-storage
system that should:

Assess the performance of an Energy Storage System (NaS
battery) to fulfill a day-ahead production commitment
Run without need of wind power forecast data (limited
availability).
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Commitment deviation: description
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The wind operator should keep the production Pgrid close to its
commitment P∗

grid . We thus define the commitment deviation:

Pdev = Pgrid − P∗
grid

. . . which should be kept “small” at all times.
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Ideal storage request
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To perfectly fulfill the commitment (Pdev = 0), the ESS should
absorb the “ideal storage request”:

P∗
sto = Pprod − P∗

grid

Energy management policy
Store Psto = P∗

sto, whenever the ESS is neither full nor empty.
10 / 28



Introduction Model description Simulation results Conclusion and perspectives

Ideal storage request
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This ideal request P∗
sto is equal to the forecast error

(assuming the commitment is taken equal to the forecast)

. . . thus the interest of studying and modeling forecast errors.
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A look at wind power forecasting

One week of a wind farm production and forecast/commitment:
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We focus on the difference between production and forecast
because P∗

sto is the input of the storage control.
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Modeling forecast errors

One week of forecast errors (i.e. P∗
sto):
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Available time series are not long enough (~few months), we need
a forecast error simulation model (a “noise generator”).
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Autoregressive modeling of forecast errors

An AR(1) model captures the autocorrelation of forecast errors:

P∗
sto(k + 1) = φP∗

sto(k) + σP

√
1− φ2ε(k + 1)
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Stochastic simulation with data-fitted model
AR(1) model =0.78
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Stochastic simulation with zero-correlation model
AR(1) model =0.00
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NaS battery modeling

Sodium-Sulfur (NaS) batteries are designed for stationnary
grid-scale storage of electricity (manufactured by NGK, Japan).

NaS Storage
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Electrical model
of a NaS cell

EDF commissioned a 7.2 MWh battery (N = 20 modules).
But the model is fully sizable in terms of rated energy
(by setting N to an arbitrary number).
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NaS battery modeling
requirements of the model

Because NaS batteries are hot (operating at 300 – 350 ℃), the
thermal modeling is important. Temperature impacts the cell
resistance, thus efficiency.

Losses of electrical energy need to be computed to evaluate their
cost.

15 / 28



Introduction Model description Simulation results Conclusion and perspectives

NaS battery model: power flows
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Power flows in the NaS battery model
(flows represented during charging)
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Combining the forecast and ESS models

For given model parameters, the wind-storage simulation generates
stochastic trajectories.

Model parameters are:
for the forecast error: RMS error σP and correlation φ
for the NaS battery: the rated energy Erated

Energy Storage
model

Wind power
forecast 

error model

with SoE control

model parameters

stochastic

deterministic

Statisticsforecast errors
time series

stochastic
output

time series

performance indices

Stochastic trajectories simulation

temperature,
losses, aging,
deviation, ...

→ mean
→ std

18 / 28



Introduction Model description Simulation results Conclusion and perspectives

Case study
a typical wind farm in La Réunion island

We consider a wind farm with a rated power Pnom = 10 MW. For
the forecast error model, we consider:

an RMS forecast error of 10 %: σP = 1 MW
an inter-hour correlation of 80 %: φ = 0.8

Before looking at the performance statistics, we first observe the
trajectories (samples of stochastic time series).

We will look at the effect of increasing the storage capacity Erated
from 5 to 20 MWh. Rated power rises accordingly since the “E/P
ratio” is fixed with the NaS technology at 7.2 hours.
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Stochastic trajectories from the simulation
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Stochastic trajectories from the simulation
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Stochastic trajectories from the simulation
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Stochastic trajectories from the simulation
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Stochastic trajectories from the simulation
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Stochastic trajectories from the simulation
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Observations:
a bigger battery “absorbs” better the forecast error
a smaller battery consumes less heating power.

We want now to compute quantitative performance indices. . .
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Statistics of performance

The stochastic simulations are repeated to collect many (1000)
trajectories on which to compute statistics of performance indices
like losses and commitment deviation.
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Parametric study of the performance
by varying the ESS capacity (0–50 MWh)

Performance metrics computed from 1000 trajectories of 30 days
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Study of a cost model

We put a monetary weight (cost) on each performance metrics
(commitment deviation, losses, aging), to find an optimal storage
capacity.

C̃tot =
1

P̄prod

(
cbatt(

|Psto|
2Nlife

+
Erated
tlife

) cycling and calendar aging

+celec(P̄losses + P̄heat) lost electricity

+cdev |Pdev | commitment deviation
)

Cost in €/MWh of produced wind energy.

Here, commitment deviation is penalized as Mean Absolute Deviation,
but other choices are possible.
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A look at the optimal capacity

With a penalty of 150 €/MWhdev, the optimal capacity is 8.5 MWh, with
an optimal cost of 50 €/MWhprod (30 for penalties, 20 for storage costs).
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Dashed lines show the sensitivity to ± 30 % variations of the deviation penalty.
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Conclusion

From our simulations, we observe that:
An Energy Storage System can indeed mitigate forecast errors
to fulfill a day-ahead commitment.
Battery cycling is kept below the allowed limit of 5000 cycles
in 15 years.
Variability of forecast errors generates a significant variability
of performance metrics, like monthly penalty averages.
This could impact day-to-day operation.

The case for Energy Storage (for day-ahead commitment):
the cost function is quite “flat”: not such a clear case for
storage (high sensitivity to storage cost and penalty fee).
but other penalty criterions may make the case clearer (like
adding a tolerance deviation band).
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Possible extensions

Additional degrees of freedom that should be taken into account to
get a better performing system:

bidding strategy: commitment power not necessarily equal to
forecast power.
curtailment: ability to lower the production level
energy management: optimized control of storage power
(→ stochastic dynamic optimization)
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