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Optimization for microgrids with storage

Microgrids control architecture is often constituted of
multiple levels handling multiple time scales

Energy storage management requires to deal with
uncertainty and information dynamic

We use two time scales stochastic dynamic optimization
to model two control levels and their interaction
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Storage control in a microgrid
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Why storage in a microgrid?

Ensure supply demand balance without wastes or curtailment:
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Why storage in a microgrid?

Energy tariff arbitrage and ancillary services
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Why stochastic dynamic optimization?

Price of electricity might be
uncertain

Demand and production are
uncertain
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Subway station microgrid example

S

	D ⊕ B

E s E l
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Hierarchical control
architecture of microgrids
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A way to deal with multiple time scales

Multiple control levels

Primary

Secondary

Tertiary

To handle multiple time scales

2∆T

2∆T
. . .

2∆t∆t

∆T

∆T
. . .

1 min

∆T

Target

1 s 1 s1 s

∆t ∆t∆t

InfoInfo

Tertiary level

Secondary level
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Small time scale: voltage stability of the grid

Objective: voltage stability of the grid

Time step: 1s

Horizon: 1 min

Input from superior level: storage input/output energy target every
minute

Output: effective command for storage every second
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Medium time scale: intraday energy tariff arbitrage
Objective: energy intraday arbitrage
Time step: 1 min
Horizon: 24h
Input from superior level: storage aging target everyday
Output to inferior level: storage input/output energy target every
minute
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Large time scale: long term aging and investments strategy
Objective: storage long term economic profitability
Time step: 1 day
Horizon: 10 years
Output to inferior level: storage aging target every day

SAFT intensium max technical sheet
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Structure of the talk

We focus on medium and large levels interaction to optimize storage:

Intraday energy arbitrage

Long term aging

SAFT intensium max technical sheet
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Two time scales
management:

investment/arbitrage
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Two time scales

2∆T∆T0 . . . D∆T
24h24h

∆T∆T

2∆T

M − 1
. . .

2∆t∆t

∆T
1 min 1 min1 min

∆t ∆t∆t

Long term aging and renewal

Intraday arbitrage
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We make decisions every minutes m and every day d

Day d , Minute m: How much energy Ud ,m do I charge or discharge
from my current battery with capacity Cd?

At the end of Day d should I buy a new battery with capacity Rd?

d , 2d , 1d , 0 . . . d ,Nt − 1 d ,Nt d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd
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Uncertain events occur right after we made our decisions

Day d , end of Minute m: we observe how much intermitent energy
W d ,m+1 we receive

At the end of Day d we observe the batteries cost W d+1 on the
market

d , 2d , 1d , 0 . . . d ,Nt − 1 d ,Nt d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd

W d ,3W d ,2W d ,1 W d ,M W d+1
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Decisions and uncertainty impact state variables

Day d , end Minute m: decision Ud ,m and realization W d ,m+1 change
our battery state of charge Sd ,m to Sd ,m+1 and our battery state of
health Hd ,m to Hd ,m+1

At the end of Day d decision Rd change our battery capacity Cd to
Cd+1

d , 2d , 1d , 0 . . . d ,Nt − 1 d ,Nt d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd

Sd ,2, Hd ,2Sd ,1, Hd ,1Sd ,0, Hd ,0 Sd ,M−1,Hd ,M−1Sd ,M ,Hd ,M

Cd+1

W d ,3W d ,2W d ,1 W d ,M W d+1
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Intraday arbitrage problem
statement
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Representation of the subway station problem

S

	D ⊕ B

E s E l

Station node

D: Demand station

E s : From grid to station

	: Discharge battery

Subways node

B: Braking

E l : From grid to battery

⊕: Charge battery
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Battery state of charge dynamics
For a given charge/discharge strategy U over a day d :

Sd ,m+1 = Sd ,m −
1

ρd
U−

d ,m︸ ︷︷ ︸
	

+ ρcsat(Sd ,m,U+
d ,m,Bd ,m+1)︸ ︷︷ ︸

⊕

with

sat(x , u, b) = min(
Smax − x

ρc
,max(u, b))

d , 0 . . . d ,M − 1
1 min1 min
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Battery aging dynamics
For a given charge/discharge strategy U over a day d

Hd ,m+1 = Hd ,m −
1

ρd
U−

d ,m − ρcsat(Sd ,m,U+
d ,m,Bd ,m+1)

d , 0 . . . d ,M
1 min1 min
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Every minute we save energy and money

If we have a battery on day d and minute m we save:

ped ,m

(
E s
d ,m+1 + E l

d ,m+1 −Dd ,m+1︸ ︷︷ ︸
Saved energy

)

ped ,m is the cost of electricity on day d at minute m

Two time scales SDP August 29, 2017 20 / 39



Summary of short term/Fast variables model

We call, at day d and minute m,

fast state variables: X f
d ,m =

(
Sd,m

Hd,m

)

fast decision variables: U f
d ,m =

(
U−d,m
U+

d,m

)

fast random variables: W f
d ,m =

(
Bd,m

Dd,m

)
fast cost function: Lfd ,m(X f

d ,m,U
f
d ,m,W

f
d ,m+1)

fast dynamics: X f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)
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Long term aging/investment
problem statement
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We decide our battery purchases at the end of each day

2∆T∆T0 . . . NT
24h24h

Should we replace our battery Cd by buying a new one Rd or not?

Cd+1 =

{
Rd , if Rd > 0

f (Cd ,Hd ,M), otherwise

paying renewal cost Pb
dRd at uncertain market prices Pb

d
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Summary of long term/Slow variables model

We call, at day d ,

slow state variables: X s
d = ( Cd )

slow decision variables: Us
d = ( Rd )

slow random variables: W s
d = ( Pb

d )

slow cost function: Lsd(X s
d ,U

s
d ,W

s
d+1) = Pb

dRd

slow dynamics: X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1)
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A link between days

The initial ”fast state” at the begining of day d deduces from:

X f
d ,0 = φd(X s

d ,X
f
d−1,M)

The initial ”slow state” at the begining of day d + 1 deduces from all that
happened the previous day:

X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

d , 2d , 1d , 0 . . . d ,Nt − 1 d ,Nt d + 1, 0
∆t∆t ∆t 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X f
d ,2X f

d ,1X f
d ,0,X

s
0 X f

d ,M−1 X f
d ,M

U f
d+1,0

X f
d+1,0,X

s
d+1

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1
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We formulate
a two time scales

stochastic optimization
problem
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We minimize fast and slow costs over the long term

min
X f ,X s ,Uf ,Us

E
[M−1∑

d=0

(M−1∑
m=0

Lfd ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

)
+ Lsd(X s

d ,U
s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)
]

X f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

X f
d ,0 = φd(X s

d ,X
f
d−1,M)

X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

U f
d ,m � Fd ,m

Us
d � Fd ,M

Two time scales SDP August 29, 2017 25 / 39



Stochastic optimal control reformulation

We call

X d = (X f
d ,0,X

s
d)

Ud = (U f
d ,:,U

s
d)

W d = (W f
d−1,:,W

s
d)

we can reformulate the problem as

min
X ,U

E
[M−1∑

d=0

Ld(X d ,Ud ,W d+1)
]

X d+1 = Fd(X d ,Ud ,W d+1)

U f
d ,m � Fd ,m

Us
d � Fd ,M

where the non-anticipativity constraints are not standard
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Information flow model

Fd ,m = σ

W f
d ′,m′

, d ′<d , m′≤M+1

W s
d ′

, d ′≤d

W f
d ,m′

, m′≤m

 = σ

(
previous days fast noises
previous days slow noises

current day previous minutes fast noises

)

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X d = (X f
d ,0,X

s
0)

U f
d+1,0

X d+1 = (X f
d+1,0,X

s
d+1)

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0
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We can write a dynamic programming equation

When the W d are independent

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

xd

U f
d+1,0

X d+1

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0

Vd(xd) = min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1))

]
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With value functions defined inductively

Every day d , we can define a value function that factorizes as function of
the state X d if the W d are independent.

Vd(xd) = min
X
d+1

,U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Fd(X d ,Ud ,W d+1)

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

The value of the whole problem being: V0(x0).
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How to decompose the problem
into

a daily optimization problem
and

an intraday optimization problem?
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Let’s ”split” the min

Vd(xd) = min
X
d+1

min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Fd(X d ,Ud ,W d+1)

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd
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Let’s introduce an auxiliary variable

Vd(xd) = min
Y
d+1

min
X
d+1

min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Y d+1

Fd(X d ,Ud ,W d+1) = Y d+1

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

Y d+1 � σ(X d ,W d+1)
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Let’s ”distribute” the mins

Vd(xd) = min
Y
d+1

[
min
U
d

E Ld(xd ,Ud ,W d+1) + min
X
d+1

E Vd+1(X d+1)
]

s.t X d+1 = Y d+1

Fd(X d ,Ud ,W d+1) = Y d+1

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

Y d+1 � σ(X d ,W d+1)
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The intraday arbitrage problem appears

For a given Y d+1 ∈ L0(Ω,F ,P), with σ(Y d+1) ⊂ σ(X d ,W d+1),

φd(xd , [Y d+1]) = min
U
d

E Ld(xd ,Ud ,W d+1)

s.t Fd(X d ,Ud ,W d+1) = Y d+1

U f
d ,m � σ(X d ,W

f
d ,1:m)

Us
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

We use the notation f ([W ]) to emphasize that f ’s domain is L0(Ω,F ,P).

This is the intraday arbitrage problem with stochastic final
age target!
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Back to the expression of the daily value functions

As Y d+1 = X d+1 we obtain:

Vd(xd) = min
X
d+1

[ intraday problem︷ ︸︸ ︷
φd(xd , [X d+1]) +

expected cost to go︷ ︸︸ ︷
EVd+1(X d+1)

]
s.t X d+1 � σ(X d ,W d+1)

with φd(xd , [X d+1]) = +∞ if X d+1 is an unreachable target for the
intraday problem.
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Significant difficulties remain

Computing φd(xd , [X d+1]) for every X d+1 is very expensive

Solving the intraday problem with a stochastic final target is hard
(X d+1 � σ(X d ,W d+1))

Then why is it interesting?

We can solve the intraday problem φd with another method (DP,
SDDP, SP, PH, MPC)

We can exploit the problem periodicity (∀d , φd = φ0)

We can simplify measurability (X d+1 � σ(X d))

We can exploit value functions monotonicity (relax the coupling
constraint Fd(X d ,Ud ,W d+1) ≥ X d+1) [2]
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Numerical results

Two time scales SDP August 29, 2017 33 / 39



Synthetic price of batteries data

Batteries cost stochastic model: synthetic scenarios that
approximately coincide with market forecasts
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Net Present Value

7 years horizon

Yearly discount factor = 0.95

10, 000 Cb scenarios to model randomness

1 buying/aging decision per month

1 charge/discharge decision every 15 min

Constraint: having a battery everytime with at least one cycle a day

Objective: maximize expected discounted revenues over 7 years
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Numerical method: Intraday DP + Extraday DP

We use DP for intraday decisions and DP for daily decisions.

Simplifications:

Monotonicity

Daily periodicity

X d+1 � σ(X d): We decide aging at the beginning of the day

.
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Results

SDP SDP + SDP
Offline comp. time ∞ 1 min + 15 min
Simulation comp. time ? [25s,30s]
Upper bound ? +128k

In Julia with a Core I7, 1.7 Ghz, 8Go ram + 12Go swap SSD
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1 simulation: cycles

NPV = 80,000 euros
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Conclusion and ongoing work

Our study leads to the following conclusions:

Controlling aging is relevant

The method can be used for aging aware intraday control as well as
investment management

This modeling framework allows to find methods to solve multi time
scales problems

We are now focusing on

Improving risk modelling

Improving batteries cost stochastic model

Improving aging model with capacity degradation

Applying dual decomposition methods
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